Step |
Hyp |
Ref |
Expression |
1 |
|
cnf2 |
|
2 |
1
|
3expia |
|
3 |
|
elpwi |
|
4 |
3
|
adantl |
|
5 |
|
toponuni |
|
6 |
5
|
ad2antlr |
|
7 |
4 6
|
sseqtrd |
|
8 |
|
eqid |
|
9 |
8
|
cnntri |
|
10 |
9
|
expcom |
|
11 |
7 10
|
syl |
|
12 |
11
|
ralrimdva |
|
13 |
2 12
|
jcad |
|
14 |
|
toponss |
|
15 |
|
velpw |
|
16 |
14 15
|
sylibr |
|
17 |
16
|
ex |
|
18 |
17
|
ad2antlr |
|
19 |
18
|
imim1d |
|
20 |
|
topontop |
|
21 |
20
|
ad3antrrr |
|
22 |
|
cnvimass |
|
23 |
|
fdm |
|
24 |
23
|
ad2antlr |
|
25 |
|
toponuni |
|
26 |
25
|
ad3antrrr |
|
27 |
24 26
|
eqtrd |
|
28 |
22 27
|
sseqtrid |
|
29 |
|
eqid |
|
30 |
29
|
ntrss2 |
|
31 |
21 28 30
|
syl2anc |
|
32 |
|
eqss |
|
33 |
32
|
baib |
|
34 |
31 33
|
syl |
|
35 |
29
|
isopn3 |
|
36 |
21 28 35
|
syl2anc |
|
37 |
|
topontop |
|
38 |
37
|
ad3antlr |
|
39 |
|
isopn3i |
|
40 |
38 39
|
sylancom |
|
41 |
40
|
imaeq2d |
|
42 |
41
|
sseq1d |
|
43 |
34 36 42
|
3bitr4rd |
|
44 |
43
|
pm5.74da |
|
45 |
19 44
|
sylibd |
|
46 |
45
|
ralimdv2 |
|
47 |
46
|
imdistanda |
|
48 |
|
iscn |
|
49 |
47 48
|
sylibrd |
|
50 |
13 49
|
impbid |
|