| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnf2 |
|
| 2 |
1
|
3expia |
|
| 3 |
|
elpwi |
|
| 4 |
3
|
adantl |
|
| 5 |
|
toponuni |
|
| 6 |
5
|
ad2antlr |
|
| 7 |
4 6
|
sseqtrd |
|
| 8 |
|
eqid |
|
| 9 |
8
|
cnntri |
|
| 10 |
9
|
expcom |
|
| 11 |
7 10
|
syl |
|
| 12 |
11
|
ralrimdva |
|
| 13 |
2 12
|
jcad |
|
| 14 |
|
toponss |
|
| 15 |
|
velpw |
|
| 16 |
14 15
|
sylibr |
|
| 17 |
16
|
ex |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
18
|
imim1d |
|
| 20 |
|
topontop |
|
| 21 |
20
|
ad3antrrr |
|
| 22 |
|
cnvimass |
|
| 23 |
|
fdm |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
|
toponuni |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
24 26
|
eqtrd |
|
| 28 |
22 27
|
sseqtrid |
|
| 29 |
|
eqid |
|
| 30 |
29
|
ntrss2 |
|
| 31 |
21 28 30
|
syl2anc |
|
| 32 |
|
eqss |
|
| 33 |
32
|
baib |
|
| 34 |
31 33
|
syl |
|
| 35 |
29
|
isopn3 |
|
| 36 |
21 28 35
|
syl2anc |
|
| 37 |
|
topontop |
|
| 38 |
37
|
ad3antlr |
|
| 39 |
|
isopn3i |
|
| 40 |
38 39
|
sylancom |
|
| 41 |
40
|
imaeq2d |
|
| 42 |
41
|
sseq1d |
|
| 43 |
34 36 42
|
3bitr4rd |
|
| 44 |
43
|
pm5.74da |
|
| 45 |
19 44
|
sylibd |
|
| 46 |
45
|
ralimdv2 |
|
| 47 |
46
|
imdistanda |
|
| 48 |
|
iscn |
|
| 49 |
47 48
|
sylibrd |
|
| 50 |
13 49
|
impbid |
|