Metamath Proof Explorer


Theorem cnnv

Description: The set of complex numbers is a normed complex vector space. The vector operation is + , the scalar product is x. , and the norm function is abs . (Contributed by Steve Rodriguez, 3-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypothesis cnnv.6 U = + × abs
Assertion cnnv U NrmCVec

Proof

Step Hyp Ref Expression
1 cnnv.6 U = + × abs
2 cnaddabloOLD + AbelOp
3 ablogrpo + AbelOp + GrpOp
4 2 3 ax-mp + GrpOp
5 ax-addf + : ×
6 5 fdmi dom + = ×
7 4 6 grporn = ran +
8 cnidOLD 0 = GId +
9 cncvcOLD + × CVec OLD
10 absf abs :
11 abs00 x x = 0 x = 0
12 11 biimpa x x = 0 x = 0
13 absmul y x y x = y x
14 abstri x y x + y x + y
15 7 8 9 10 12 13 14 1 isnvi U NrmCVec