Metamath Proof Explorer


Theorem cnnvm

Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis cnnvm.6 U = + × abs
Assertion cnnvm = - v U

Proof

Step Hyp Ref Expression
1 cnnvm.6 U = + × abs
2 mulm1 y -1 y = y
3 2 adantl x y -1 y = y
4 3 oveq2d x y x + -1 y = x + y
5 negsub x y x + y = x y
6 4 5 eqtr2d x y x y = x + -1 y
7 6 mpoeq3ia x , y x y = x , y x + -1 y
8 subf : ×
9 ffn : × Fn ×
10 8 9 ax-mp Fn ×
11 fnov Fn × = x , y x y
12 10 11 mpbi = x , y x y
13 1 cnnv U NrmCVec
14 1 cnnvba = BaseSet U
15 1 cnnvg + = + v U
16 1 cnnvs × = 𝑠OLD U
17 eqid - v U = - v U
18 14 15 16 17 nvmfval U NrmCVec - v U = x , y x + -1 y
19 13 18 ax-mp - v U = x , y x + -1 y
20 7 12 19 3eqtr4i = - v U