Metamath Proof Explorer


Theorem cnpco

Description: The composition of a function F continuous at P with a function continuous at ( FP ) is continuous at P . Proposition 2 of BourbakiTop1 p. I.9. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion cnpco F J CnP K P G K CnP L F P G F J CnP L P

Proof

Step Hyp Ref Expression
1 cnptop1 F J CnP K P J Top
2 1 adantr F J CnP K P G K CnP L F P J Top
3 cnptop2 G K CnP L F P L Top
4 3 adantl F J CnP K P G K CnP L F P L Top
5 eqid J = J
6 5 cnprcl F J CnP K P P J
7 6 adantr F J CnP K P G K CnP L F P P J
8 2 4 7 3jca F J CnP K P G K CnP L F P J Top L Top P J
9 eqid K = K
10 eqid L = L
11 9 10 cnpf G K CnP L F P G : K L
12 11 adantl F J CnP K P G K CnP L F P G : K L
13 5 9 cnpf F J CnP K P F : J K
14 13 adantr F J CnP K P G K CnP L F P F : J K
15 fco G : K L F : J K G F : J L
16 12 14 15 syl2anc F J CnP K P G K CnP L F P G F : J L
17 simplr F J CnP K P G K CnP L F P z L G F P z G K CnP L F P
18 simprl F J CnP K P G K CnP L F P z L G F P z z L
19 fvco3 F : J K P J G F P = G F P
20 14 7 19 syl2anc F J CnP K P G K CnP L F P G F P = G F P
21 20 adantr F J CnP K P G K CnP L F P z L G F P z G F P = G F P
22 simprr F J CnP K P G K CnP L F P z L G F P z G F P z
23 21 22 eqeltrrd F J CnP K P G K CnP L F P z L G F P z G F P z
24 cnpimaex G K CnP L F P z L G F P z y K F P y G y z
25 17 18 23 24 syl3anc F J CnP K P G K CnP L F P z L G F P z y K F P y G y z
26 simplll F J CnP K P G K CnP L F P z L G F P z y K F P y G y z F J CnP K P
27 simprl F J CnP K P G K CnP L F P z L G F P z y K F P y G y z y K
28 simprrl F J CnP K P G K CnP L F P z L G F P z y K F P y G y z F P y
29 cnpimaex F J CnP K P y K F P y x J P x F x y
30 26 27 28 29 syl3anc F J CnP K P G K CnP L F P z L G F P z y K F P y G y z x J P x F x y
31 imaco G F x = G F x
32 imass2 F x y G F x G y
33 31 32 eqsstrid F x y G F x G y
34 simprrr F J CnP K P G K CnP L F P z L G F P z y K F P y G y z G y z
35 sstr2 G F x G y G y z G F x z
36 33 34 35 syl2imc F J CnP K P G K CnP L F P z L G F P z y K F P y G y z F x y G F x z
37 36 anim2d F J CnP K P G K CnP L F P z L G F P z y K F P y G y z P x F x y P x G F x z
38 37 reximdv F J CnP K P G K CnP L F P z L G F P z y K F P y G y z x J P x F x y x J P x G F x z
39 30 38 mpd F J CnP K P G K CnP L F P z L G F P z y K F P y G y z x J P x G F x z
40 25 39 rexlimddv F J CnP K P G K CnP L F P z L G F P z x J P x G F x z
41 40 expr F J CnP K P G K CnP L F P z L G F P z x J P x G F x z
42 41 ralrimiva F J CnP K P G K CnP L F P z L G F P z x J P x G F x z
43 16 42 jca F J CnP K P G K CnP L F P G F : J L z L G F P z x J P x G F x z
44 5 10 iscnp2 G F J CnP L P J Top L Top P J G F : J L z L G F P z x J P x G F x z
45 8 43 44 sylanbrc F J CnP K P G K CnP L F P G F J CnP L P