Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
cnperf
Next ⟩
iccntr
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnperf
Description:
The complex numbers are a perfect space.
(Contributed by
Mario Carneiro
, 26-Dec-2016)
Ref
Expression
Hypothesis
recld2.1
⊢
J
=
TopOpen
⁡
ℂ
fld
Assertion
cnperf
⊢
J
∈
Perf
Proof
Step
Hyp
Ref
Expression
1
recld2.1
⊢
J
=
TopOpen
⁡
ℂ
fld
2
1
cnfldtopon
⊢
J
∈
TopOn
⁡
ℂ
3
2
toponunii
⊢
ℂ
=
⋃
J
4
3
restid
⊢
J
∈
TopOn
⁡
ℂ
→
J
↾
𝑡
ℂ
=
J
5
2
4
ax-mp
⊢
J
↾
𝑡
ℂ
=
J
6
recn
⊢
y
∈
ℝ
→
y
∈
ℂ
7
addcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
+
y
∈
ℂ
8
6
7
sylan2
⊢
x
∈
ℂ
∧
y
∈
ℝ
→
x
+
y
∈
ℂ
9
ssid
⊢
ℂ
⊆
ℂ
10
1
8
9
reperflem
⊢
J
↾
𝑡
ℂ
∈
Perf
11
5
10
eqeltrri
⊢
J
∈
Perf