Metamath Proof Explorer


Theorem cnperf

Description: The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis recld2.1 J = TopOpen fld
Assertion cnperf J Perf

Proof

Step Hyp Ref Expression
1 recld2.1 J = TopOpen fld
2 1 cnfldtopon J TopOn
3 2 toponunii = J
4 3 restid J TopOn J 𝑡 = J
5 2 4 ax-mp J 𝑡 = J
6 recn y y
7 addcl x y x + y
8 6 7 sylan2 x y x + y
9 ssid
10 1 8 9 reperflem J 𝑡 Perf
11 5 10 eqeltrri J Perf