Step |
Hyp |
Ref |
Expression |
1 |
|
cnpf2 |
|
2 |
1
|
3expa |
|
3 |
2
|
3adantl3 |
|
4 |
|
topontop |
|
5 |
|
cnpfcfi |
|
6 |
5
|
3com23 |
|
7 |
6
|
3expia |
|
8 |
4 7
|
sylan |
|
9 |
8
|
ralrimivw |
|
10 |
9
|
3ad2antl2 |
|
11 |
3 10
|
jca |
|
12 |
11
|
ex |
|
13 |
|
simplrl |
|
14 |
|
filfbas |
|
15 |
13 14
|
syl |
|
16 |
|
simprl |
|
17 |
|
simpllr |
|
18 |
|
simprr |
|
19 |
15 16 17 18
|
fmfnfm |
|
20 |
|
r19.29 |
|
21 |
|
flimfcls |
|
22 |
|
simpll1 |
|
23 |
22
|
ad2antrr |
|
24 |
|
simprl |
|
25 |
|
simprrl |
|
26 |
|
flimss2 |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
|
simprr |
|
29 |
28
|
ad2antrr |
|
30 |
27 29
|
sseldd |
|
31 |
21 30
|
sselid |
|
32 |
|
simpll2 |
|
33 |
32
|
ad2antrr |
|
34 |
|
simplr |
|
35 |
34
|
ad2antrr |
|
36 |
|
fcfval |
|
37 |
33 24 35 36
|
syl3anc |
|
38 |
|
simprrr |
|
39 |
38
|
oveq2d |
|
40 |
37 39
|
eqtr4d |
|
41 |
40
|
eleq2d |
|
42 |
41
|
biimpd |
|
43 |
31 42
|
embantd |
|
44 |
43
|
expr |
|
45 |
44
|
impcomd |
|
46 |
45
|
rexlimdva |
|
47 |
20 46
|
syl5 |
|
48 |
19 47
|
mpan2d |
|
49 |
48
|
expr |
|
50 |
49
|
com23 |
|
51 |
50
|
ralrimdva |
|
52 |
|
toponmax |
|
53 |
32 52
|
syl |
|
54 |
|
simprl |
|
55 |
54 14
|
syl |
|
56 |
|
fmfil |
|
57 |
53 55 34 56
|
syl3anc |
|
58 |
|
toponuni |
|
59 |
32 58
|
syl |
|
60 |
59
|
fveq2d |
|
61 |
57 60
|
eleqtrd |
|
62 |
|
eqid |
|
63 |
62
|
flimfnfcls |
|
64 |
61 63
|
syl |
|
65 |
|
flfval |
|
66 |
32 54 34 65
|
syl3anc |
|
67 |
66
|
eleq2d |
|
68 |
60
|
raleqdv |
|
69 |
64 67 68
|
3bitr4d |
|
70 |
51 69
|
sylibrd |
|
71 |
70
|
expr |
|
72 |
71
|
com23 |
|
73 |
72
|
ralrimdva |
|
74 |
73
|
imdistanda |
|
75 |
|
cnpflf |
|
76 |
74 75
|
sylibrd |
|
77 |
12 76
|
impbid |
|