| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpf2 |
|
| 2 |
1
|
3expa |
|
| 3 |
2
|
3adantl3 |
|
| 4 |
|
topontop |
|
| 5 |
|
cnpfcfi |
|
| 6 |
5
|
3com23 |
|
| 7 |
6
|
3expia |
|
| 8 |
4 7
|
sylan |
|
| 9 |
8
|
ralrimivw |
|
| 10 |
9
|
3ad2antl2 |
|
| 11 |
3 10
|
jca |
|
| 12 |
11
|
ex |
|
| 13 |
|
simplrl |
|
| 14 |
|
filfbas |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
simprl |
|
| 17 |
|
simpllr |
|
| 18 |
|
simprr |
|
| 19 |
15 16 17 18
|
fmfnfm |
|
| 20 |
|
r19.29 |
|
| 21 |
|
flimfcls |
|
| 22 |
|
simpll1 |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
simprl |
|
| 25 |
|
simprrl |
|
| 26 |
|
flimss2 |
|
| 27 |
23 24 25 26
|
syl3anc |
|
| 28 |
|
simprr |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
27 29
|
sseldd |
|
| 31 |
21 30
|
sselid |
|
| 32 |
|
simpll2 |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
|
simplr |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
fcfval |
|
| 37 |
33 24 35 36
|
syl3anc |
|
| 38 |
|
simprrr |
|
| 39 |
38
|
oveq2d |
|
| 40 |
37 39
|
eqtr4d |
|
| 41 |
40
|
eleq2d |
|
| 42 |
41
|
biimpd |
|
| 43 |
31 42
|
embantd |
|
| 44 |
43
|
expr |
|
| 45 |
44
|
impcomd |
|
| 46 |
45
|
rexlimdva |
|
| 47 |
20 46
|
syl5 |
|
| 48 |
19 47
|
mpan2d |
|
| 49 |
48
|
expr |
|
| 50 |
49
|
com23 |
|
| 51 |
50
|
ralrimdva |
|
| 52 |
|
toponmax |
|
| 53 |
32 52
|
syl |
|
| 54 |
|
simprl |
|
| 55 |
54 14
|
syl |
|
| 56 |
|
fmfil |
|
| 57 |
53 55 34 56
|
syl3anc |
|
| 58 |
|
toponuni |
|
| 59 |
32 58
|
syl |
|
| 60 |
59
|
fveq2d |
|
| 61 |
57 60
|
eleqtrd |
|
| 62 |
|
eqid |
|
| 63 |
62
|
flimfnfcls |
|
| 64 |
61 63
|
syl |
|
| 65 |
|
flfval |
|
| 66 |
32 54 34 65
|
syl3anc |
|
| 67 |
66
|
eleq2d |
|
| 68 |
60
|
raleqdv |
|
| 69 |
64 67 68
|
3bitr4d |
|
| 70 |
51 69
|
sylibrd |
|
| 71 |
70
|
expr |
|
| 72 |
71
|
com23 |
|
| 73 |
72
|
ralrimdva |
|
| 74 |
73
|
imdistanda |
|
| 75 |
|
cnpflf |
|
| 76 |
74 75
|
sylibrd |
|
| 77 |
12 76
|
impbid |
|