Metamath Proof Explorer


Theorem cnpfcfi

Description: Lemma for cnpfcf . If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion cnpfcfi K Top A J fClus L F J CnP K A F A K fClusf L F

Proof

Step Hyp Ref Expression
1 simp2 K Top A J fClus L F J CnP K A A J fClus L
2 eqid J = J
3 2 fclsfil A J fClus L L Fil J
4 3 3ad2ant2 K Top A J fClus L F J CnP K A L Fil J
5 fclsfnflim L Fil J A J fClus L f Fil J L f A J fLim f
6 4 5 syl K Top A J fClus L F J CnP K A A J fClus L f Fil J L f A J fLim f
7 1 6 mpbid K Top A J fClus L F J CnP K A f Fil J L f A J fLim f
8 simpl1 K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K Top
9 toptopon2 K Top K TopOn K
10 8 9 sylib K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K TopOn K
11 simprl K Top A J fClus L F J CnP K A f Fil J L f A J fLim f f Fil J
12 eqid K = K
13 2 12 cnpf F J CnP K A F : J K
14 13 3ad2ant3 K Top A J fClus L F J CnP K A F : J K
15 14 adantr K Top A J fClus L F J CnP K A f Fil J L f A J fLim f F : J K
16 flfssfcf K TopOn K f Fil J F : J K K fLimf f F K fClusf f F
17 10 11 15 16 syl3anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K fLimf f F K fClusf f F
18 12 topopn K Top K K
19 8 18 syl K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K K
20 4 adantr K Top A J fClus L F J CnP K A f Fil J L f A J fLim f L Fil J
21 filfbas L Fil J L fBas J
22 20 21 syl K Top A J fClus L F J CnP K A f Fil J L f A J fLim f L fBas J
23 fmfil K K L fBas J F : J K K FilMap F L Fil K
24 19 22 15 23 syl3anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K FilMap F L Fil K
25 filfbas f Fil J f fBas J
26 25 ad2antrl K Top A J fClus L F J CnP K A f Fil J L f A J fLim f f fBas J
27 simprrl K Top A J fClus L F J CnP K A f Fil J L f A J fLim f L f
28 fmss K K L fBas J f fBas J F : J K L f K FilMap F L K FilMap F f
29 19 22 26 15 27 28 syl32anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K FilMap F L K FilMap F f
30 fclsss2 K TopOn K K FilMap F L Fil K K FilMap F L K FilMap F f K fClus K FilMap F f K fClus K FilMap F L
31 10 24 29 30 syl3anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K fClus K FilMap F f K fClus K FilMap F L
32 fcfval K TopOn K f Fil J F : J K K fClusf f F = K fClus K FilMap F f
33 10 11 15 32 syl3anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K fClusf f F = K fClus K FilMap F f
34 fcfval K TopOn K L Fil J F : J K K fClusf L F = K fClus K FilMap F L
35 10 20 15 34 syl3anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K fClusf L F = K fClus K FilMap F L
36 31 33 35 3sstr4d K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K fClusf f F K fClusf L F
37 17 36 sstrd K Top A J fClus L F J CnP K A f Fil J L f A J fLim f K fLimf f F K fClusf L F
38 simprrr K Top A J fClus L F J CnP K A f Fil J L f A J fLim f A J fLim f
39 simpl3 K Top A J fClus L F J CnP K A f Fil J L f A J fLim f F J CnP K A
40 cnpflfi A J fLim f F J CnP K A F A K fLimf f F
41 38 39 40 syl2anc K Top A J fClus L F J CnP K A f Fil J L f A J fLim f F A K fLimf f F
42 37 41 sseldd K Top A J fClus L F J CnP K A f Fil J L f A J fLim f F A K fClusf L F
43 7 42 rexlimddv K Top A J fClus L F J CnP K A F A K fClusf L F