Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|
2 |
|
eqid |
|
3 |
2
|
fclsfil |
|
4 |
3
|
3ad2ant2 |
|
5 |
|
fclsfnflim |
|
6 |
4 5
|
syl |
|
7 |
1 6
|
mpbid |
|
8 |
|
simpl1 |
|
9 |
|
toptopon2 |
|
10 |
8 9
|
sylib |
|
11 |
|
simprl |
|
12 |
|
eqid |
|
13 |
2 12
|
cnpf |
|
14 |
13
|
3ad2ant3 |
|
15 |
14
|
adantr |
|
16 |
|
flfssfcf |
|
17 |
10 11 15 16
|
syl3anc |
|
18 |
12
|
topopn |
|
19 |
8 18
|
syl |
|
20 |
4
|
adantr |
|
21 |
|
filfbas |
|
22 |
20 21
|
syl |
|
23 |
|
fmfil |
|
24 |
19 22 15 23
|
syl3anc |
|
25 |
|
filfbas |
|
26 |
25
|
ad2antrl |
|
27 |
|
simprrl |
|
28 |
|
fmss |
|
29 |
19 22 26 15 27 28
|
syl32anc |
|
30 |
|
fclsss2 |
|
31 |
10 24 29 30
|
syl3anc |
|
32 |
|
fcfval |
|
33 |
10 11 15 32
|
syl3anc |
|
34 |
|
fcfval |
|
35 |
10 20 15 34
|
syl3anc |
|
36 |
31 33 35
|
3sstr4d |
|
37 |
17 36
|
sstrd |
|
38 |
|
simprrr |
|
39 |
|
simpl3 |
|
40 |
|
cnpflfi |
|
41 |
38 39 40
|
syl2anc |
|
42 |
37 41
|
sseldd |
|
43 |
7 42
|
rexlimddv |
|