Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnpflf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnpf2 | |
|
2 | 1 | 3expa | |
3 | 2 | 3adantl3 | |
4 | cnpflfi | |
|
5 | 4 | expcom | |
6 | 5 | ralrimivw | |
7 | 6 | adantl | |
8 | 3 7 | jca | |
9 | 8 | ex | |
10 | simpl1 | |
|
11 | simpl3 | |
|
12 | neiflim | |
|
13 | 10 11 12 | syl2anc | |
14 | 11 | snssd | |
15 | 11 | snn0d | |
16 | neifil | |
|
17 | 10 14 15 16 | syl3anc | |
18 | oveq2 | |
|
19 | 18 | eleq2d | |
20 | oveq2 | |
|
21 | 20 | fveq1d | |
22 | 21 | eleq2d | |
23 | 19 22 | imbi12d | |
24 | 23 | rspcv | |
25 | 17 24 | syl | |
26 | 13 25 | mpid | |
27 | 26 | imdistanda | |
28 | eqid | |
|
29 | 28 | cnpflf2 | |
30 | 27 29 | sylibrd | |
31 | 9 30 | impbid | |