Metamath Proof Explorer


Theorem cnpflf

Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion cnpflf JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfLimfFAKfLimffF

Proof

Step Hyp Ref Expression
1 cnpf2 JTopOnXKTopOnYFJCnPKAF:XY
2 1 3expa JTopOnXKTopOnYFJCnPKAF:XY
3 2 3adantl3 JTopOnXKTopOnYAXFJCnPKAF:XY
4 cnpflfi AJfLimfFJCnPKAFAKfLimffF
5 4 expcom FJCnPKAAJfLimfFAKfLimffF
6 5 ralrimivw FJCnPKAfFilXAJfLimfFAKfLimffF
7 6 adantl JTopOnXKTopOnYAXFJCnPKAfFilXAJfLimfFAKfLimffF
8 3 7 jca JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfLimfFAKfLimffF
9 8 ex JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfLimfFAKfLimffF
10 simpl1 JTopOnXKTopOnYAXF:XYJTopOnX
11 simpl3 JTopOnXKTopOnYAXF:XYAX
12 neiflim JTopOnXAXAJfLimneiJA
13 10 11 12 syl2anc JTopOnXKTopOnYAXF:XYAJfLimneiJA
14 11 snssd JTopOnXKTopOnYAXF:XYAX
15 11 snn0d JTopOnXKTopOnYAXF:XYA
16 neifil JTopOnXAXAneiJAFilX
17 10 14 15 16 syl3anc JTopOnXKTopOnYAXF:XYneiJAFilX
18 oveq2 f=neiJAJfLimf=JfLimneiJA
19 18 eleq2d f=neiJAAJfLimfAJfLimneiJA
20 oveq2 f=neiJAKfLimff=KfLimfneiJA
21 20 fveq1d f=neiJAKfLimffF=KfLimfneiJAF
22 21 eleq2d f=neiJAFAKfLimffFFAKfLimfneiJAF
23 19 22 imbi12d f=neiJAAJfLimfFAKfLimffFAJfLimneiJAFAKfLimfneiJAF
24 23 rspcv neiJAFilXfFilXAJfLimfFAKfLimffFAJfLimneiJAFAKfLimfneiJAF
25 17 24 syl JTopOnXKTopOnYAXF:XYfFilXAJfLimfFAKfLimffFAJfLimneiJAFAKfLimfneiJAF
26 13 25 mpid JTopOnXKTopOnYAXF:XYfFilXAJfLimfFAKfLimffFFAKfLimfneiJAF
27 26 imdistanda JTopOnXKTopOnYAXF:XYfFilXAJfLimfFAKfLimffFF:XYFAKfLimfneiJAF
28 eqid neiJA=neiJA
29 28 cnpflf2 JTopOnXKTopOnYAXFJCnPKAF:XYFAKfLimfneiJAF
30 27 29 sylibrd JTopOnXKTopOnYAXF:XYfFilXAJfLimfFAKfLimffFFJCnPKA
31 9 30 impbid JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfLimfFAKfLimffF