Metamath Proof Explorer


Theorem cnpflf

Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion cnpflf J TopOn X K TopOn Y A X F J CnP K A F : X Y f Fil X A J fLim f F A K fLimf f F

Proof

Step Hyp Ref Expression
1 cnpf2 J TopOn X K TopOn Y F J CnP K A F : X Y
2 1 3expa J TopOn X K TopOn Y F J CnP K A F : X Y
3 2 3adantl3 J TopOn X K TopOn Y A X F J CnP K A F : X Y
4 cnpflfi A J fLim f F J CnP K A F A K fLimf f F
5 4 expcom F J CnP K A A J fLim f F A K fLimf f F
6 5 ralrimivw F J CnP K A f Fil X A J fLim f F A K fLimf f F
7 6 adantl J TopOn X K TopOn Y A X F J CnP K A f Fil X A J fLim f F A K fLimf f F
8 3 7 jca J TopOn X K TopOn Y A X F J CnP K A F : X Y f Fil X A J fLim f F A K fLimf f F
9 8 ex J TopOn X K TopOn Y A X F J CnP K A F : X Y f Fil X A J fLim f F A K fLimf f F
10 simpl1 J TopOn X K TopOn Y A X F : X Y J TopOn X
11 simpl3 J TopOn X K TopOn Y A X F : X Y A X
12 neiflim J TopOn X A X A J fLim nei J A
13 10 11 12 syl2anc J TopOn X K TopOn Y A X F : X Y A J fLim nei J A
14 11 snssd J TopOn X K TopOn Y A X F : X Y A X
15 11 snn0d J TopOn X K TopOn Y A X F : X Y A
16 neifil J TopOn X A X A nei J A Fil X
17 10 14 15 16 syl3anc J TopOn X K TopOn Y A X F : X Y nei J A Fil X
18 oveq2 f = nei J A J fLim f = J fLim nei J A
19 18 eleq2d f = nei J A A J fLim f A J fLim nei J A
20 oveq2 f = nei J A K fLimf f = K fLimf nei J A
21 20 fveq1d f = nei J A K fLimf f F = K fLimf nei J A F
22 21 eleq2d f = nei J A F A K fLimf f F F A K fLimf nei J A F
23 19 22 imbi12d f = nei J A A J fLim f F A K fLimf f F A J fLim nei J A F A K fLimf nei J A F
24 23 rspcv nei J A Fil X f Fil X A J fLim f F A K fLimf f F A J fLim nei J A F A K fLimf nei J A F
25 17 24 syl J TopOn X K TopOn Y A X F : X Y f Fil X A J fLim f F A K fLimf f F A J fLim nei J A F A K fLimf nei J A F
26 13 25 mpid J TopOn X K TopOn Y A X F : X Y f Fil X A J fLim f F A K fLimf f F F A K fLimf nei J A F
27 26 imdistanda J TopOn X K TopOn Y A X F : X Y f Fil X A J fLim f F A K fLimf f F F : X Y F A K fLimf nei J A F
28 eqid nei J A = nei J A
29 28 cnpflf2 J TopOn X K TopOn Y A X F J CnP K A F : X Y F A K fLimf nei J A F
30 27 29 sylibrd J TopOn X K TopOn Y A X F : X Y f Fil X A J fLim f F A K fLimf f F F J CnP K A
31 9 30 impbid J TopOn X K TopOn Y A X F J CnP K A F : X Y f Fil X A J fLim f F A K fLimf f F