Step |
Hyp |
Ref |
Expression |
1 |
|
cnpflf2.3 |
|
2 |
|
cnpf2 |
|
3 |
2
|
3expa |
|
4 |
3
|
3adantl3 |
|
5 |
|
simpl1 |
|
6 |
|
simpl3 |
|
7 |
|
neiflim |
|
8 |
1
|
oveq2i |
|
9 |
7 8
|
eleqtrrdi |
|
10 |
5 6 9
|
syl2anc |
|
11 |
|
simpr |
|
12 |
|
cnpflfi |
|
13 |
10 11 12
|
syl2anc |
|
14 |
4 13
|
jca |
|
15 |
|
simpl1 |
|
16 |
|
topontop |
|
17 |
15 16
|
syl |
|
18 |
|
simpl3 |
|
19 |
|
toponuni |
|
20 |
15 19
|
syl |
|
21 |
18 20
|
eleqtrd |
|
22 |
1
|
eleq2i |
|
23 |
|
eqid |
|
24 |
23
|
isneip |
|
25 |
22 24
|
syl5bb |
|
26 |
17 21 25
|
syl2anc |
|
27 |
|
sstr2 |
|
28 |
|
imass2 |
|
29 |
27 28
|
syl11 |
|
30 |
29
|
anim2d |
|
31 |
30
|
reximdv |
|
32 |
31
|
com12 |
|
33 |
32
|
adantl |
|
34 |
26 33
|
syl6bi |
|
35 |
34
|
rexlimdv |
|
36 |
35
|
imim2d |
|
37 |
36
|
ralimdv |
|
38 |
|
simpr |
|
39 |
37 38
|
jctild |
|
40 |
39
|
adantld |
|
41 |
|
simpl2 |
|
42 |
18
|
snssd |
|
43 |
18
|
snn0d |
|
44 |
|
neifil |
|
45 |
15 42 43 44
|
syl3anc |
|
46 |
1 45
|
eqeltrid |
|
47 |
|
isflf |
|
48 |
41 46 38 47
|
syl3anc |
|
49 |
|
iscnp |
|
50 |
49
|
adantr |
|
51 |
40 48 50
|
3imtr4d |
|
52 |
51
|
impr |
|
53 |
14 52
|
impbida |
|