| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpflf2.3 |
|
| 2 |
|
cnpf2 |
|
| 3 |
2
|
3expa |
|
| 4 |
3
|
3adantl3 |
|
| 5 |
|
simpl1 |
|
| 6 |
|
simpl3 |
|
| 7 |
|
neiflim |
|
| 8 |
1
|
oveq2i |
|
| 9 |
7 8
|
eleqtrrdi |
|
| 10 |
5 6 9
|
syl2anc |
|
| 11 |
|
simpr |
|
| 12 |
|
cnpflfi |
|
| 13 |
10 11 12
|
syl2anc |
|
| 14 |
4 13
|
jca |
|
| 15 |
|
simpl1 |
|
| 16 |
|
topontop |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
simpl3 |
|
| 19 |
|
toponuni |
|
| 20 |
15 19
|
syl |
|
| 21 |
18 20
|
eleqtrd |
|
| 22 |
1
|
eleq2i |
|
| 23 |
|
eqid |
|
| 24 |
23
|
isneip |
|
| 25 |
22 24
|
bitrid |
|
| 26 |
17 21 25
|
syl2anc |
|
| 27 |
|
sstr2 |
|
| 28 |
|
imass2 |
|
| 29 |
27 28
|
syl11 |
|
| 30 |
29
|
anim2d |
|
| 31 |
30
|
reximdv |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
adantl |
|
| 34 |
26 33
|
biimtrdi |
|
| 35 |
34
|
rexlimdv |
|
| 36 |
35
|
imim2d |
|
| 37 |
36
|
ralimdv |
|
| 38 |
|
simpr |
|
| 39 |
37 38
|
jctild |
|
| 40 |
39
|
adantld |
|
| 41 |
|
simpl2 |
|
| 42 |
18
|
snssd |
|
| 43 |
18
|
snn0d |
|
| 44 |
|
neifil |
|
| 45 |
15 42 43 44
|
syl3anc |
|
| 46 |
1 45
|
eqeltrid |
|
| 47 |
|
isflf |
|
| 48 |
41 46 38 47
|
syl3anc |
|
| 49 |
|
iscnp |
|
| 50 |
49
|
adantr |
|
| 51 |
40 48 50
|
3imtr4d |
|
| 52 |
51
|
impr |
|
| 53 |
14 52
|
impbida |
|