Metamath Proof Explorer


Theorem cnpflf2

Description: F is continuous at point A iff a limit of F when x tends to A is ( FA ) . Proposition 9 of BourbakiTop1 p. TG I.50. (Contributed by FL, 29-May-2011) (Revised by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis cnpflf2.3 L=neiJA
Assertion cnpflf2 JTopOnXKTopOnYAXFJCnPKAF:XYFAKfLimfLF

Proof

Step Hyp Ref Expression
1 cnpflf2.3 L=neiJA
2 cnpf2 JTopOnXKTopOnYFJCnPKAF:XY
3 2 3expa JTopOnXKTopOnYFJCnPKAF:XY
4 3 3adantl3 JTopOnXKTopOnYAXFJCnPKAF:XY
5 simpl1 JTopOnXKTopOnYAXFJCnPKAJTopOnX
6 simpl3 JTopOnXKTopOnYAXFJCnPKAAX
7 neiflim JTopOnXAXAJfLimneiJA
8 1 oveq2i JfLimL=JfLimneiJA
9 7 8 eleqtrrdi JTopOnXAXAJfLimL
10 5 6 9 syl2anc JTopOnXKTopOnYAXFJCnPKAAJfLimL
11 simpr JTopOnXKTopOnYAXFJCnPKAFJCnPKA
12 cnpflfi AJfLimLFJCnPKAFAKfLimfLF
13 10 11 12 syl2anc JTopOnXKTopOnYAXFJCnPKAFAKfLimfLF
14 4 13 jca JTopOnXKTopOnYAXFJCnPKAF:XYFAKfLimfLF
15 simpl1 JTopOnXKTopOnYAXF:XYJTopOnX
16 topontop JTopOnXJTop
17 15 16 syl JTopOnXKTopOnYAXF:XYJTop
18 simpl3 JTopOnXKTopOnYAXF:XYAX
19 toponuni JTopOnXX=J
20 15 19 syl JTopOnXKTopOnYAXF:XYX=J
21 18 20 eleqtrd JTopOnXKTopOnYAXF:XYAJ
22 1 eleq2i zLzneiJA
23 eqid J=J
24 23 isneip JTopAJzneiJAzJvJAvvz
25 22 24 bitrid JTopAJzLzJvJAvvz
26 17 21 25 syl2anc JTopOnXKTopOnYAXF:XYzLzJvJAvvz
27 sstr2 FvFzFzuFvu
28 imass2 vzFvFz
29 27 28 syl11 FzuvzFvu
30 29 anim2d FzuAvvzAvFvu
31 30 reximdv FzuvJAvvzvJAvFvu
32 31 com12 vJAvvzFzuvJAvFvu
33 32 adantl zJvJAvvzFzuvJAvFvu
34 26 33 biimtrdi JTopOnXKTopOnYAXF:XYzLFzuvJAvFvu
35 34 rexlimdv JTopOnXKTopOnYAXF:XYzLFzuvJAvFvu
36 35 imim2d JTopOnXKTopOnYAXF:XYFAuzLFzuFAuvJAvFvu
37 36 ralimdv JTopOnXKTopOnYAXF:XYuKFAuzLFzuuKFAuvJAvFvu
38 simpr JTopOnXKTopOnYAXF:XYF:XY
39 37 38 jctild JTopOnXKTopOnYAXF:XYuKFAuzLFzuF:XYuKFAuvJAvFvu
40 39 adantld JTopOnXKTopOnYAXF:XYFAYuKFAuzLFzuF:XYuKFAuvJAvFvu
41 simpl2 JTopOnXKTopOnYAXF:XYKTopOnY
42 18 snssd JTopOnXKTopOnYAXF:XYAX
43 18 snn0d JTopOnXKTopOnYAXF:XYA
44 neifil JTopOnXAXAneiJAFilX
45 15 42 43 44 syl3anc JTopOnXKTopOnYAXF:XYneiJAFilX
46 1 45 eqeltrid JTopOnXKTopOnYAXF:XYLFilX
47 isflf KTopOnYLFilXF:XYFAKfLimfLFFAYuKFAuzLFzu
48 41 46 38 47 syl3anc JTopOnXKTopOnYAXF:XYFAKfLimfLFFAYuKFAuzLFzu
49 iscnp JTopOnXKTopOnYAXFJCnPKAF:XYuKFAuvJAvFvu
50 49 adantr JTopOnXKTopOnYAXF:XYFJCnPKAF:XYuKFAuvJAvFvu
51 40 48 50 3imtr4d JTopOnXKTopOnYAXF:XYFAKfLimfLFFJCnPKA
52 51 impr JTopOnXKTopOnYAXF:XYFAKfLimfLFFJCnPKA
53 14 52 impbida JTopOnXKTopOnYAXFJCnPKAF:XYFAKfLimfLF