Metamath Proof Explorer


Theorem cnpimaex

Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006)

Ref Expression
Assertion cnpimaex F J CnP K P A K F P A x J P x F x A

Proof

Step Hyp Ref Expression
1 eqid J = J
2 eqid K = K
3 1 2 iscnp2 F J CnP K P J Top K Top P J F : J K y K F P y x J P x F x y
4 3 simprbi F J CnP K P F : J K y K F P y x J P x F x y
5 eleq2 y = A F P y F P A
6 sseq2 y = A F x y F x A
7 6 anbi2d y = A P x F x y P x F x A
8 7 rexbidv y = A x J P x F x y x J P x F x A
9 5 8 imbi12d y = A F P y x J P x F x y F P A x J P x F x A
10 9 rspccv y K F P y x J P x F x y A K F P A x J P x F x A
11 4 10 simpl2im F J CnP K P A K F P A x J P x F x A
12 11 3imp F J CnP K P A K F P A x J P x F x A