Database
BASIC TOPOLOGY
Topology
Limits and continuity in topological spaces
cnpimaex
Next ⟩
idcn
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnpimaex
Description:
Property of a function continuous at a point.
(Contributed by
FL
, 31-Dec-2006)
Ref
Expression
Assertion
cnpimaex
⊢
F
∈
J
CnP
K
⁡
P
∧
A
∈
K
∧
F
⁡
P
∈
A
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
J
=
⋃
J
2
eqid
⊢
⋃
K
=
⋃
K
3
1
2
iscnp2
⊢
F
∈
J
CnP
K
⁡
P
↔
J
∈
Top
∧
K
∈
Top
∧
P
∈
⋃
J
∧
F
:
⋃
J
⟶
⋃
K
∧
∀
y
∈
K
F
⁡
P
∈
y
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
y
4
3
simprbi
⊢
F
∈
J
CnP
K
⁡
P
→
F
:
⋃
J
⟶
⋃
K
∧
∀
y
∈
K
F
⁡
P
∈
y
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
y
5
eleq2
⊢
y
=
A
→
F
⁡
P
∈
y
↔
F
⁡
P
∈
A
6
sseq2
⊢
y
=
A
→
F
x
⊆
y
↔
F
x
⊆
A
7
6
anbi2d
⊢
y
=
A
→
P
∈
x
∧
F
x
⊆
y
↔
P
∈
x
∧
F
x
⊆
A
8
7
rexbidv
⊢
y
=
A
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
y
↔
∃
x
∈
J
P
∈
x
∧
F
x
⊆
A
9
5
8
imbi12d
⊢
y
=
A
→
F
⁡
P
∈
y
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
y
↔
F
⁡
P
∈
A
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
A
10
9
rspccv
⊢
∀
y
∈
K
F
⁡
P
∈
y
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
y
→
A
∈
K
→
F
⁡
P
∈
A
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
A
11
4
10
simpl2im
⊢
F
∈
J
CnP
K
⁡
P
→
A
∈
K
→
F
⁡
P
∈
A
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
A
12
11
3imp
⊢
F
∈
J
CnP
K
⁡
P
∧
A
∈
K
∧
F
⁡
P
∈
A
→
∃
x
∈
J
P
∈
x
∧
F
x
⊆
A