Metamath Proof Explorer


Theorem cnpimaex

Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006)

Ref Expression
Assertion cnpimaex FJCnPKPAKFPAxJPxFxA

Proof

Step Hyp Ref Expression
1 eqid J=J
2 eqid K=K
3 1 2 iscnp2 FJCnPKPJTopKTopPJF:JKyKFPyxJPxFxy
4 3 simprbi FJCnPKPF:JKyKFPyxJPxFxy
5 eleq2 y=AFPyFPA
6 sseq2 y=AFxyFxA
7 6 anbi2d y=APxFxyPxFxA
8 7 rexbidv y=AxJPxFxyxJPxFxA
9 5 8 imbi12d y=AFPyxJPxFxyFPAxJPxFxA
10 9 rspccv yKFPyxJPxFxyAKFPAxJPxFxA
11 4 10 simpl2im FJCnPKPAKFPAxJPxFxA
12 11 3imp FJCnPKPAKFPAxJPxFxA