Step |
Hyp |
Ref |
Expression |
1 |
|
cnplimc.k |
|
2 |
|
cnplimc.j |
|
3 |
1
|
cnfldtopon |
|
4 |
|
simpl |
|
5 |
|
resttopon |
|
6 |
3 4 5
|
sylancr |
|
7 |
2 6
|
eqeltrid |
|
8 |
|
cnpf2 |
|
9 |
8
|
3expia |
|
10 |
7 3 9
|
sylancl |
|
11 |
10
|
pm4.71rd |
|
12 |
|
simpr |
|
13 |
|
simplr |
|
14 |
13
|
snssd |
|
15 |
|
ssequn2 |
|
16 |
14 15
|
sylib |
|
17 |
16
|
feq2d |
|
18 |
12 17
|
mpbird |
|
19 |
18
|
feqmptd |
|
20 |
16
|
oveq2d |
|
21 |
2 20
|
eqtr4id |
|
22 |
21
|
oveq1d |
|
23 |
22
|
fveq1d |
|
24 |
19 23
|
eleq12d |
|
25 |
|
eqid |
|
26 |
|
ifid |
|
27 |
|
fveq2 |
|
28 |
27
|
adantl |
|
29 |
28
|
ifeq1da |
|
30 |
26 29
|
eqtr3id |
|
31 |
30
|
mpteq2ia |
|
32 |
|
simpll |
|
33 |
32 13
|
sseldd |
|
34 |
25 1 31 12 32 33
|
ellimc |
|
35 |
24 34
|
bitr4d |
|
36 |
35
|
pm5.32da |
|
37 |
11 36
|
bitrd |
|