Step |
Hyp |
Ref |
Expression |
1 |
|
cnpnei.1 |
|
2 |
|
cnpnei.2 |
|
3 |
|
cnvimass |
|
4 |
|
fdm |
|
5 |
3 4
|
sseqtrid |
|
6 |
5
|
3ad2ant3 |
|
7 |
6
|
ad2antrr |
|
8 |
|
neii2 |
|
9 |
8
|
3ad2antl2 |
|
10 |
9
|
ad2ant2rl |
|
11 |
|
simpll |
|
12 |
|
simprl |
|
13 |
|
fvex |
|
14 |
13
|
snss |
|
15 |
14
|
biimpri |
|
16 |
15
|
adantr |
|
17 |
16
|
ad2antll |
|
18 |
11 12 17
|
3jca |
|
19 |
18
|
adantll |
|
20 |
|
cnpimaex |
|
21 |
19 20
|
syl |
|
22 |
|
sstr2 |
|
23 |
22
|
com12 |
|
24 |
23
|
ad2antll |
|
25 |
24
|
ad2antlr |
|
26 |
|
ffun |
|
27 |
26
|
3ad2ant3 |
|
28 |
27
|
ad2antrr |
|
29 |
28
|
ad2antrr |
|
30 |
1
|
eltopss |
|
31 |
30
|
adantlr |
|
32 |
4
|
sseq2d |
|
33 |
32
|
ad2antlr |
|
34 |
31 33
|
mpbird |
|
35 |
34
|
3adantl2 |
|
36 |
35
|
adantlr |
|
37 |
36
|
ad4ant14 |
|
38 |
|
funimass3 |
|
39 |
29 37 38
|
syl2anc |
|
40 |
25 39
|
sylibd |
|
41 |
40
|
anim2d |
|
42 |
41
|
reximdva |
|
43 |
21 42
|
mpd |
|
44 |
10 43
|
rexlimddv |
|
45 |
1
|
isneip |
|
46 |
45
|
3ad2antl1 |
|
47 |
46
|
adantr |
|
48 |
7 44 47
|
mpbir2and |
|
49 |
48
|
exp32 |
|
50 |
49
|
ralrimdv |
|
51 |
|
simpll3 |
|
52 |
|
opnneip |
|
53 |
|
imaeq2 |
|
54 |
53
|
eleq1d |
|
55 |
54
|
rspcv |
|
56 |
52 55
|
syl |
|
57 |
56
|
3com23 |
|
58 |
57
|
3expb |
|
59 |
58
|
3ad2antl2 |
|
60 |
59
|
adantlr |
|
61 |
|
neii2 |
|
62 |
61
|
ex |
|
63 |
62
|
3ad2ant1 |
|
64 |
63
|
ad2antrr |
|
65 |
|
snssg |
|
66 |
65
|
ad3antlr |
|
67 |
27
|
ad3antrrr |
|
68 |
1
|
eltopss |
|
69 |
68
|
3ad2antl1 |
|
70 |
4
|
sseq2d |
|
71 |
70
|
3ad2ant3 |
|
72 |
71
|
biimpar |
|
73 |
69 72
|
syldan |
|
74 |
73
|
ad4ant14 |
|
75 |
|
funimass3 |
|
76 |
67 74 75
|
syl2anc |
|
77 |
66 76
|
anbi12d |
|
78 |
77
|
biimprd |
|
79 |
78
|
reximdva |
|
80 |
60 64 79
|
3syld |
|
81 |
80
|
exp32 |
|
82 |
81
|
com24 |
|
83 |
82
|
imp |
|
84 |
83
|
ralrimiv |
|
85 |
1 2
|
iscnp2 |
|
86 |
85
|
baib |
|
87 |
86
|
3expa |
|
88 |
87
|
3adantl3 |
|
89 |
88
|
adantr |
|
90 |
51 84 89
|
mpbir2and |
|
91 |
90
|
ex |
|
92 |
50 91
|
impbid |
|