Metamath Proof Explorer


Theorem cnprcl

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis iscnp2.1 X = J
Assertion cnprcl F J CnP K P P X

Proof

Step Hyp Ref Expression
1 iscnp2.1 X = J
2 eqid K = K
3 1 2 iscnp2 F J CnP K P J Top K Top P X F : X K y K F P y x J P x F x y
4 3 simplbi F J CnP K P J Top K Top P X
5 4 simp3d F J CnP K P P X