Metamath Proof Explorer


Theorem cnprcl2

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnprcl2 JTopOnXFJCnPKPPX

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 cnprcl FJCnPKPPJ
3 2 adantl JTopOnXFJCnPKPPJ
4 toponuni JTopOnXX=J
5 4 adantr JTopOnXFJCnPKPX=J
6 3 5 eleqtrrd JTopOnXFJCnPKPPX