Metamath Proof Explorer


Theorem cnprcl2

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnprcl2 J TopOn X F J CnP K P P X

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 cnprcl F J CnP K P P J
3 2 adantl J TopOn X F J CnP K P P J
4 toponuni J TopOn X X = J
5 4 adantr J TopOn X F J CnP K P X = J
6 3 5 eleqtrrd J TopOn X F J CnP K P P X