| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnprest.1 |
|
| 2 |
|
cnprest.2 |
|
| 3 |
|
cnptop1 |
|
| 4 |
1
|
cnprcl |
|
| 5 |
3 4
|
jca |
|
| 6 |
5
|
a1i |
|
| 7 |
|
cnptop1 |
|
| 8 |
1
|
cnprcl |
|
| 9 |
7 8
|
jca |
|
| 10 |
9
|
a1i |
|
| 11 |
|
simpl2 |
|
| 12 |
|
simprr |
|
| 13 |
11 12
|
ffvelcdmd |
|
| 14 |
13
|
biantrud |
|
| 15 |
|
elin |
|
| 16 |
14 15
|
bitr4di |
|
| 17 |
|
imassrn |
|
| 18 |
11
|
frnd |
|
| 19 |
17 18
|
sstrid |
|
| 20 |
19
|
biantrud |
|
| 21 |
|
ssin |
|
| 22 |
20 21
|
bitrdi |
|
| 23 |
22
|
anbi2d |
|
| 24 |
23
|
rexbidv |
|
| 25 |
16 24
|
imbi12d |
|
| 26 |
25
|
ralbidv |
|
| 27 |
|
vex |
|
| 28 |
27
|
inex1 |
|
| 29 |
28
|
a1i |
|
| 30 |
|
simpl1 |
|
| 31 |
|
uniexg |
|
| 32 |
2 31
|
eqeltrid |
|
| 33 |
30 32
|
syl |
|
| 34 |
|
simpl3 |
|
| 35 |
33 34
|
ssexd |
|
| 36 |
|
elrest |
|
| 37 |
30 35 36
|
syl2anc |
|
| 38 |
|
eleq2 |
|
| 39 |
|
sseq2 |
|
| 40 |
39
|
anbi2d |
|
| 41 |
40
|
rexbidv |
|
| 42 |
38 41
|
imbi12d |
|
| 43 |
42
|
adantl |
|
| 44 |
29 37 43
|
ralxfr2d |
|
| 45 |
26 44
|
bitr4d |
|
| 46 |
11 34
|
fssd |
|
| 47 |
|
simprl |
|
| 48 |
1 2
|
iscnp2 |
|
| 49 |
48
|
baib |
|
| 50 |
47 30 12 49
|
syl3anc |
|
| 51 |
46 50
|
mpbirand |
|
| 52 |
1
|
toptopon |
|
| 53 |
47 52
|
sylib |
|
| 54 |
2
|
toptopon |
|
| 55 |
30 54
|
sylib |
|
| 56 |
|
resttopon |
|
| 57 |
55 34 56
|
syl2anc |
|
| 58 |
|
iscnp |
|
| 59 |
53 57 12 58
|
syl3anc |
|
| 60 |
11 59
|
mpbirand |
|
| 61 |
45 51 60
|
3bitr4d |
|
| 62 |
61
|
ex |
|
| 63 |
6 10 62
|
pm5.21ndd |
|