Metamath Proof Explorer


Theorem cnptop2

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnptop2 F J CnP K P K Top

Proof

Step Hyp Ref Expression
1 eqid J = J
2 eqid K = K
3 1 2 iscnp2 F J CnP K P J Top K Top P J F : J K y K F P y x J P x F x y
4 3 simplbi F J CnP K P J Top K Top P J
5 4 simp2d F J CnP K P K Top