| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpwstotbnd.y |
|
| 2 |
|
cnpwstotbnd.d |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
fvexd |
|
| 9 |
|
simpr |
|
| 10 |
|
ovex |
|
| 11 |
|
fnconstg |
|
| 12 |
10 11
|
mp1i |
|
| 13 |
|
eqid |
|
| 14 |
|
cnfldms |
|
| 15 |
|
cnex |
|
| 16 |
15
|
ssex |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
ressms |
|
| 19 |
14 17 18
|
sylancr |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
20 21
|
msmet |
|
| 23 |
19 22
|
syl |
|
| 24 |
10
|
fvconst2 |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
fveq2d |
|
| 27 |
25
|
fveq2d |
|
| 28 |
27
|
sqxpeqd |
|
| 29 |
26 28
|
reseq12d |
|
| 30 |
27
|
fveq2d |
|
| 31 |
23 29 30
|
3eltr4d |
|
| 32 |
|
totbndbnd |
|
| 33 |
|
eqid |
|
| 34 |
|
cnfldbas |
|
| 35 |
33 34
|
ressbas2 |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
36
|
fveq2d |
|
| 38 |
23 37
|
eleqtrrd |
|
| 39 |
|
eqid |
|
| 40 |
39
|
bnd2lem |
|
| 41 |
40
|
ex |
|
| 42 |
38 41
|
syl |
|
| 43 |
32 42
|
syl5 |
|
| 44 |
|
eqid |
|
| 45 |
44
|
cntotbnd |
|
| 46 |
45
|
a1i |
|
| 47 |
36
|
sseq2d |
|
| 48 |
47
|
biimpa |
|
| 49 |
|
xpss12 |
|
| 50 |
48 48 49
|
syl2anc |
|
| 51 |
50
|
resabs1d |
|
| 52 |
17
|
adantr |
|
| 53 |
|
cnfldds |
|
| 54 |
33 53
|
ressds |
|
| 55 |
52 54
|
syl |
|
| 56 |
55
|
reseq1d |
|
| 57 |
51 56
|
eqtr4d |
|
| 58 |
57
|
eleq1d |
|
| 59 |
57
|
eleq1d |
|
| 60 |
46 58 59
|
3bitr4d |
|
| 61 |
60
|
ex |
|
| 62 |
43 42 61
|
pm5.21ndd |
|
| 63 |
29
|
reseq1d |
|
| 64 |
63
|
eleq1d |
|
| 65 |
63
|
eleq1d |
|
| 66 |
62 64 65
|
3bitr4d |
|
| 67 |
3 4 5 6 7 8 9 12 13 31 66
|
prdsbnd2 |
|
| 68 |
|
eqid |
|
| 69 |
1 68
|
pwsval |
|
| 70 |
10 9 69
|
sylancr |
|
| 71 |
70
|
fveq2d |
|
| 72 |
71
|
reseq1d |
|
| 73 |
2 72
|
eqtrid |
|
| 74 |
73
|
eleq1d |
|
| 75 |
73
|
eleq1d |
|
| 76 |
67 74 75
|
3bitr4d |
|