Metamath Proof Explorer


Theorem cnrbas

Description: The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021)

Ref Expression
Hypothesis cnrlmod.c C = ringLMod fld
Assertion cnrbas Base C =

Proof

Step Hyp Ref Expression
1 cnrlmod.c C = ringLMod fld
2 rlmbas Base fld = Base ringLMod fld
3 cnfldbas = Base fld
4 1 fveq2i Base C = Base ringLMod fld
5 2 3 4 3eqtr4ri Base C =