Step |
Hyp |
Ref |
Expression |
1 |
|
cnrehmeo.1 |
|
2 |
|
cnrehmeo.2 |
|
3 |
|
cnrehmeo.3 |
|
4 |
|
retopon |
|
5 |
2 4
|
eqeltri |
|
6 |
5
|
a1i |
|
7 |
3
|
cnfldtop |
|
8 |
|
cnrest2r |
|
9 |
7 8
|
mp1i |
|
10 |
6 6
|
cnmpt1st |
|
11 |
3
|
tgioo2 |
|
12 |
2 11
|
eqtri |
|
13 |
12
|
oveq2i |
|
14 |
10 13
|
eleqtrdi |
|
15 |
9 14
|
sseldd |
|
16 |
3
|
cnfldtopon |
|
17 |
16
|
a1i |
|
18 |
|
ax-icn |
|
19 |
18
|
a1i |
|
20 |
6 6 17 19
|
cnmpt2c |
|
21 |
6 6
|
cnmpt2nd |
|
22 |
21 13
|
eleqtrdi |
|
23 |
9 22
|
sseldd |
|
24 |
3
|
mulcn |
|
25 |
24
|
a1i |
|
26 |
6 6 20 23 25
|
cnmpt22f |
|
27 |
3
|
addcn |
|
28 |
27
|
a1i |
|
29 |
6 6 15 26 28
|
cnmpt22f |
|
30 |
1 29
|
eqeltrid |
|
31 |
1
|
cnrecnv |
|
32 |
|
ref |
|
33 |
32
|
a1i |
|
34 |
33
|
feqmptd |
|
35 |
|
recncf |
|
36 |
|
ssid |
|
37 |
|
ax-resscn |
|
38 |
16
|
toponrestid |
|
39 |
3 38 12
|
cncfcn |
|
40 |
36 37 39
|
mp2an |
|
41 |
35 40
|
eleqtri |
|
42 |
34 41
|
eqeltrrdi |
|
43 |
|
imf |
|
44 |
43
|
a1i |
|
45 |
44
|
feqmptd |
|
46 |
|
imcncf |
|
47 |
46 40
|
eleqtri |
|
48 |
45 47
|
eqeltrrdi |
|
49 |
17 42 48
|
cnmpt1t |
|
50 |
31 49
|
eqeltrid |
|
51 |
|
ishmeo |
|
52 |
30 50 51
|
sylanbrc |
|
53 |
52
|
mptru |
|