Metamath Proof Explorer


Theorem cnrest

Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis cnrest.1 X = J
Assertion cnrest F J Cn K A X F A J 𝑡 A Cn K

Proof

Step Hyp Ref Expression
1 cnrest.1 X = J
2 eqid K = K
3 1 2 cnf F J Cn K F : X K
4 3 adantr F J Cn K A X F : X K
5 simpr F J Cn K A X A X
6 4 5 fssresd F J Cn K A X F A : A K
7 cnvresima F A -1 o = F -1 o A
8 cntop1 F J Cn K J Top
9 8 adantr F J Cn K A X J Top
10 9 adantr F J Cn K A X o K J Top
11 1 topopn J Top X J
12 ssexg A X X J A V
13 12 ancoms X J A X A V
14 11 13 sylan J Top A X A V
15 8 14 sylan F J Cn K A X A V
16 15 adantr F J Cn K A X o K A V
17 cnima F J Cn K o K F -1 o J
18 17 adantlr F J Cn K A X o K F -1 o J
19 elrestr J Top A V F -1 o J F -1 o A J 𝑡 A
20 10 16 18 19 syl3anc F J Cn K A X o K F -1 o A J 𝑡 A
21 7 20 eqeltrid F J Cn K A X o K F A -1 o J 𝑡 A
22 21 ralrimiva F J Cn K A X o K F A -1 o J 𝑡 A
23 1 toptopon J Top J TopOn X
24 8 23 sylib F J Cn K J TopOn X
25 resttopon J TopOn X A X J 𝑡 A TopOn A
26 24 25 sylan F J Cn K A X J 𝑡 A TopOn A
27 cntop2 F J Cn K K Top
28 27 adantr F J Cn K A X K Top
29 2 toptopon K Top K TopOn K
30 28 29 sylib F J Cn K A X K TopOn K
31 iscn J 𝑡 A TopOn A K TopOn K F A J 𝑡 A Cn K F A : A K o K F A -1 o J 𝑡 A
32 26 30 31 syl2anc F J Cn K A X F A J 𝑡 A Cn K F A : A K o K F A -1 o J 𝑡 A
33 6 22 32 mpbir2and F J Cn K A X F A J 𝑡 A Cn K