Step |
Hyp |
Ref |
Expression |
1 |
|
cntop1 |
|
2 |
1
|
a1i |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
cnf |
|
6 |
5
|
ffnd |
|
7 |
6
|
a1i |
|
8 |
|
simp2 |
|
9 |
7 8
|
jctird |
|
10 |
|
df-f |
|
11 |
9 10
|
syl6ibr |
|
12 |
2 11
|
jcad |
|
13 |
|
cntop1 |
|
14 |
13
|
adantl |
|
15 |
|
toptopon2 |
|
16 |
14 15
|
sylib |
|
17 |
|
resttopon |
|
18 |
17
|
3adant2 |
|
19 |
18
|
adantr |
|
20 |
|
simpr |
|
21 |
|
cnf2 |
|
22 |
16 19 20 21
|
syl3anc |
|
23 |
14 22
|
jca |
|
24 |
23
|
ex |
|
25 |
|
vex |
|
26 |
25
|
inex1 |
|
27 |
26
|
a1i |
|
28 |
|
simpl1 |
|
29 |
|
toponmax |
|
30 |
28 29
|
syl |
|
31 |
|
simpl3 |
|
32 |
30 31
|
ssexd |
|
33 |
|
elrest |
|
34 |
28 32 33
|
syl2anc |
|
35 |
|
imaeq2 |
|
36 |
35
|
eleq1d |
|
37 |
36
|
adantl |
|
38 |
27 34 37
|
ralxfr2d |
|
39 |
|
simplrr |
|
40 |
|
ffun |
|
41 |
|
inpreima |
|
42 |
39 40 41
|
3syl |
|
43 |
|
cnvimass |
|
44 |
|
cnvimarndm |
|
45 |
43 44
|
sseqtrri |
|
46 |
|
simpll2 |
|
47 |
|
imass2 |
|
48 |
46 47
|
syl |
|
49 |
45 48
|
sstrid |
|
50 |
|
df-ss |
|
51 |
49 50
|
sylib |
|
52 |
42 51
|
eqtrd |
|
53 |
52
|
eleq1d |
|
54 |
53
|
ralbidva |
|
55 |
|
simprr |
|
56 |
55 31
|
fssd |
|
57 |
56
|
biantrurd |
|
58 |
38 54 57
|
3bitrrd |
|
59 |
55
|
biantrurd |
|
60 |
58 59
|
bitrd |
|
61 |
|
simprl |
|
62 |
61 15
|
sylib |
|
63 |
|
iscn |
|
64 |
62 28 63
|
syl2anc |
|
65 |
18
|
adantr |
|
66 |
|
iscn |
|
67 |
62 65 66
|
syl2anc |
|
68 |
60 64 67
|
3bitr4d |
|
69 |
68
|
ex |
|
70 |
12 24 69
|
pm5.21ndd |
|