Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
cnrmnrm
Next ⟩
restcnrm
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnrmnrm
Description:
A completely normal space is normal.
(Contributed by
Mario Carneiro
, 26-Aug-2015)
Ref
Expression
Assertion
cnrmnrm
⊢
J
∈
CNrm
→
J
∈
Nrm
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
J
=
⋃
J
2
1
restid
⊢
J
∈
CNrm
→
J
↾
𝑡
⋃
J
=
J
3
uniexg
⊢
J
∈
CNrm
→
⋃
J
∈
V
4
cnrmi
⊢
J
∈
CNrm
∧
⋃
J
∈
V
→
J
↾
𝑡
⋃
J
∈
Nrm
5
3
4
mpdan
⊢
J
∈
CNrm
→
J
↾
𝑡
⋃
J
∈
Nrm
6
2
5
eqeltrrd
⊢
J
∈
CNrm
→
J
∈
Nrm