Metamath Proof Explorer


Theorem cnso

Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion cnso x x Or

Proof

Step Hyp Ref Expression
1 ltso < Or
2 eqid b c | d e b = a d c = a e d < e = b c | d e b = a d c = a e d < e
3 f1oiso a : 1-1 onto b c | d e b = a d c = a e d < e = b c | d e b = a d c = a e d < e a Isom < , b c | d e b = a d c = a e d < e
4 2 3 mpan2 a : 1-1 onto a Isom < , b c | d e b = a d c = a e d < e
5 isoso a Isom < , b c | d e b = a d c = a e d < e < Or b c | d e b = a d c = a e d < e Or
6 soinxp b c | d e b = a d c = a e d < e Or b c | d e b = a d c = a e d < e × Or
7 5 6 bitrdi a Isom < , b c | d e b = a d c = a e d < e < Or b c | d e b = a d c = a e d < e × Or
8 4 7 syl a : 1-1 onto < Or b c | d e b = a d c = a e d < e × Or
9 1 8 mpbii a : 1-1 onto b c | d e b = a d c = a e d < e × Or
10 cnex V
11 10 10 xpex × V
12 11 inex2 b c | d e b = a d c = a e d < e × V
13 soeq1 x = b c | d e b = a d c = a e d < e × x Or b c | d e b = a d c = a e d < e × Or
14 12 13 spcev b c | d e b = a d c = a e d < e × Or x x Or
15 9 14 syl a : 1-1 onto x x Or
16 rpnnen 𝒫
17 cpnnen 𝒫
18 16 17 entr4i
19 bren a a : 1-1 onto
20 18 19 mpbi a a : 1-1 onto
21 15 20 exlimiiv x x Or