Metamath Proof Explorer


Theorem cnsrng

Description: The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion cnsrng fld *-Ring

Proof

Step Hyp Ref Expression
1 cnfldbas = Base fld
2 1 a1i = Base fld
3 cnfldadd + = + fld
4 3 a1i + = + fld
5 cnfldmul × = fld
6 5 a1i × = fld
7 cnfldcj * = * fld
8 7 a1i * = * fld
9 cnring fld Ring
10 9 a1i fld Ring
11 cjcl x x
12 11 adantl x x
13 cjadd x y x + y = x + y
14 13 3adant1 x y x + y = x + y
15 mulcom x y x y = y x
16 15 fveq2d x y x y = y x
17 cjmul y x y x = y x
18 17 ancoms x y y x = y x
19 16 18 eqtrd x y x y = y x
20 19 3adant1 x y x y = y x
21 cjcj x x = x
22 21 adantl x x = x
23 2 4 6 8 10 12 14 20 22 issrngd fld *-Ring
24 23 mptru fld *-Ring