Metamath Proof Explorer


Theorem cnss1

Description: If the topology K is finer than J , then there are more continuous functions from K than from J . (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis cnss1.1 X = J
Assertion cnss1 K TopOn X J K J Cn L K Cn L

Proof

Step Hyp Ref Expression
1 cnss1.1 X = J
2 eqid L = L
3 1 2 cnf f J Cn L f : X L
4 3 adantl K TopOn X J K f J Cn L f : X L
5 simpllr K TopOn X J K f J Cn L x L J K
6 cnima f J Cn L x L f -1 x J
7 6 adantll K TopOn X J K f J Cn L x L f -1 x J
8 5 7 sseldd K TopOn X J K f J Cn L x L f -1 x K
9 8 ralrimiva K TopOn X J K f J Cn L x L f -1 x K
10 simpll K TopOn X J K f J Cn L K TopOn X
11 cntop2 f J Cn L L Top
12 11 adantl K TopOn X J K f J Cn L L Top
13 toptopon2 L Top L TopOn L
14 12 13 sylib K TopOn X J K f J Cn L L TopOn L
15 iscn K TopOn X L TopOn L f K Cn L f : X L x L f -1 x K
16 10 14 15 syl2anc K TopOn X J K f J Cn L f K Cn L f : X L x L f -1 x K
17 4 9 16 mpbir2and K TopOn X J K f J Cn L f K Cn L
18 17 ex K TopOn X J K f J Cn L f K Cn L
19 18 ssrdv K TopOn X J K J Cn L K Cn L