Metamath Proof Explorer


Theorem cnsscnp

Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis cnsscnp.1 X = J
Assertion cnsscnp P X J Cn K J CnP K P

Proof

Step Hyp Ref Expression
1 cnsscnp.1 X = J
2 1 cncnpi f J Cn K P X f J CnP K P
3 2 expcom P X f J Cn K f J CnP K P
4 3 ssrdv P X J Cn K J CnP K P