Metamath Proof Explorer


Theorem cnstrcvs

Description: The set of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
Assertion cnstrcvs W ℂVec

Proof

Step Hyp Ref Expression
1 cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
2 1 cnlmod W LMod
3 cnfldex fld V
4 cnfldbas = Base fld
5 4 ressid fld V fld 𝑠 = fld
6 3 5 ax-mp fld 𝑠 = fld
7 6 eqcomi fld = fld 𝑠
8 id x x
9 addcl x y x + y
10 negcl x x
11 ax-1cn 1
12 mulcl x y x y
13 8 9 10 11 12 cnsubrglem SubRing fld
14 qdass Base ndx + ndx + Scalar ndx fld ndx × = Base ndx + ndx + Scalar ndx fld ndx ×
15 1 14 eqtri W = Base ndx + ndx + Scalar ndx fld ndx ×
16 15 lmodsca fld V fld = Scalar W
17 3 16 ax-mp fld = Scalar W
18 17 isclmi W LMod fld = fld 𝑠 SubRing fld W CMod
19 2 7 13 18 mp3an W CMod
20 cndrng fld DivRing
21 17 islvec W LVec W LMod fld DivRing
22 2 20 21 mpbir2an W LVec
23 19 22 elini W CMod LVec
24 df-cvs ℂVec = CMod LVec
25 23 24 eleqtrri W ℂVec