Metamath Proof Explorer


Theorem cnsubglem

Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses cnsubglem.1 x A x
cnsubglem.2 x A y A x + y A
cnsubglem.3 x A x A
cnsubglem.4 B A
Assertion cnsubglem A SubGrp fld

Proof

Step Hyp Ref Expression
1 cnsubglem.1 x A x
2 cnsubglem.2 x A y A x + y A
3 cnsubglem.3 x A x A
4 cnsubglem.4 B A
5 1 ssriv A
6 4 ne0ii A
7 2 ralrimiva x A y A x + y A
8 cnfldneg x inv g fld x = x
9 1 8 syl x A inv g fld x = x
10 9 3 eqeltrd x A inv g fld x A
11 7 10 jca x A y A x + y A inv g fld x A
12 11 rgen x A y A x + y A inv g fld x A
13 cnring fld Ring
14 ringgrp fld Ring fld Grp
15 cnfldbas = Base fld
16 cnfldadd + = + fld
17 eqid inv g fld = inv g fld
18 15 16 17 issubg2 fld Grp A SubGrp fld A A x A y A x + y A inv g fld x A
19 13 14 18 mp2b A SubGrp fld A A x A y A x + y A inv g fld x A
20 5 6 12 19 mpbir3an A SubGrp fld