Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Definition and basic properties
cnsubmlem
Next ⟩
cnsubglem
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnsubmlem
Description:
Lemma for
nn0subm
and friends.
(Contributed by
Mario Carneiro
, 18-Jun-2015)
Ref
Expression
Hypotheses
cnsubglem.1
⊢
x
∈
A
→
x
∈
ℂ
cnsubglem.2
⊢
x
∈
A
∧
y
∈
A
→
x
+
y
∈
A
cnsubmlem.3
⊢
0
∈
A
Assertion
cnsubmlem
⊢
A
∈
SubMnd
⁡
ℂ
fld
Proof
Step
Hyp
Ref
Expression
1
cnsubglem.1
⊢
x
∈
A
→
x
∈
ℂ
2
cnsubglem.2
⊢
x
∈
A
∧
y
∈
A
→
x
+
y
∈
A
3
cnsubmlem.3
⊢
0
∈
A
4
1
ssriv
⊢
A
⊆
ℂ
5
2
rgen2
⊢
∀
x
∈
A
∀
y
∈
A
x
+
y
∈
A
6
cnring
⊢
ℂ
fld
∈
Ring
7
ringmnd
⊢
ℂ
fld
∈
Ring
→
ℂ
fld
∈
Mnd
8
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
9
cnfld0
⊢
0
=
0
ℂ
fld
10
cnfldadd
⊢
+
=
+
ℂ
fld
11
8
9
10
issubm
⊢
ℂ
fld
∈
Mnd
→
A
∈
SubMnd
⁡
ℂ
fld
↔
A
⊆
ℂ
∧
0
∈
A
∧
∀
x
∈
A
∀
y
∈
A
x
+
y
∈
A
12
6
7
11
mp2b
⊢
A
∈
SubMnd
⁡
ℂ
fld
↔
A
⊆
ℂ
∧
0
∈
A
∧
∀
x
∈
A
∀
y
∈
A
x
+
y
∈
A
13
4
3
5
12
mpbir3an
⊢
A
∈
SubMnd
⁡
ℂ
fld