Metamath Proof Explorer


Theorem cnsubmlem

Description: Lemma for nn0subm and friends. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses cnsubglem.1 x A x
cnsubglem.2 x A y A x + y A
cnsubmlem.3 0 A
Assertion cnsubmlem A SubMnd fld

Proof

Step Hyp Ref Expression
1 cnsubglem.1 x A x
2 cnsubglem.2 x A y A x + y A
3 cnsubmlem.3 0 A
4 1 ssriv A
5 2 rgen2 x A y A x + y A
6 cnring fld Ring
7 ringmnd fld Ring fld Mnd
8 cnfldbas = Base fld
9 cnfld0 0 = 0 fld
10 cnfldadd + = + fld
11 8 9 10 issubm fld Mnd A SubMnd fld A 0 A x A y A x + y A
12 6 7 11 mp2b A SubMnd fld A 0 A x A y A x + y A
13 4 3 5 12 mpbir3an A SubMnd fld