Step |
Hyp |
Ref |
Expression |
1 |
|
ssdif0 |
|
2 |
|
simpr |
|
3 |
|
simplr |
|
4 |
2 3
|
eqssd |
|
5 |
4
|
orcd |
|
6 |
1 5
|
sylan2br |
|
7 |
|
n0 |
|
8 |
|
simpll |
|
9 |
|
cnfldbas |
|
10 |
9
|
subrgss |
|
11 |
8 10
|
syl |
|
12 |
|
replim |
|
13 |
12
|
ad2antll |
|
14 |
|
simpll |
|
15 |
|
simplr |
|
16 |
|
recl |
|
17 |
16
|
ad2antll |
|
18 |
15 17
|
sseldd |
|
19 |
|
ax-icn |
|
20 |
19
|
a1i |
|
21 |
|
eldifi |
|
22 |
21
|
adantl |
|
23 |
11 22
|
sseldd |
|
24 |
|
imcl |
|
25 |
23 24
|
syl |
|
26 |
25
|
recnd |
|
27 |
|
eldifn |
|
28 |
27
|
adantl |
|
29 |
|
reim0b |
|
30 |
29
|
necon3bbid |
|
31 |
23 30
|
syl |
|
32 |
28 31
|
mpbid |
|
33 |
20 26 32
|
divcan4d |
|
34 |
|
mulcl |
|
35 |
19 26 34
|
sylancr |
|
36 |
35 26 32
|
divrecd |
|
37 |
33 36
|
eqtr3d |
|
38 |
23
|
recld |
|
39 |
38
|
recnd |
|
40 |
23 39
|
negsubd |
|
41 |
|
replim |
|
42 |
23 41
|
syl |
|
43 |
42
|
oveq1d |
|
44 |
39 35
|
pncan2d |
|
45 |
40 43 44
|
3eqtrd |
|
46 |
|
simplr |
|
47 |
38
|
renegcld |
|
48 |
46 47
|
sseldd |
|
49 |
|
cnfldadd |
|
50 |
49
|
subrgacl |
|
51 |
8 22 48 50
|
syl3anc |
|
52 |
45 51
|
eqeltrrd |
|
53 |
25 32
|
rereccld |
|
54 |
46 53
|
sseldd |
|
55 |
|
cnfldmul |
|
56 |
55
|
subrgmcl |
|
57 |
8 52 54 56
|
syl3anc |
|
58 |
37 57
|
eqeltrd |
|
59 |
58
|
adantrr |
|
60 |
|
imcl |
|
61 |
60
|
ad2antll |
|
62 |
15 61
|
sseldd |
|
63 |
55
|
subrgmcl |
|
64 |
14 59 62 63
|
syl3anc |
|
65 |
49
|
subrgacl |
|
66 |
14 18 64 65
|
syl3anc |
|
67 |
13 66
|
eqeltrd |
|
68 |
67
|
expr |
|
69 |
68
|
ssrdv |
|
70 |
11 69
|
eqssd |
|
71 |
70
|
olcd |
|
72 |
71
|
ex |
|
73 |
72
|
exlimdv |
|
74 |
73
|
imp |
|
75 |
7 74
|
sylan2b |
|
76 |
6 75
|
pm2.61dane |
|
77 |
|
elprg |
|
78 |
77
|
adantr |
|
79 |
76 78
|
mpbird |
|