Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Definition and basic properties
cnsubrglem
Next ⟩
cnsubdrglem
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnsubrglem
Description:
Lemma for
resubdrg
and friends.
(Contributed by
Mario Carneiro
, 4-Dec-2014)
Ref
Expression
Hypotheses
cnsubglem.1
⊢
x
∈
A
→
x
∈
ℂ
cnsubglem.2
⊢
x
∈
A
∧
y
∈
A
→
x
+
y
∈
A
cnsubglem.3
⊢
x
∈
A
→
−
x
∈
A
cnsubrglem.4
⊢
1
∈
A
cnsubrglem.5
⊢
x
∈
A
∧
y
∈
A
→
x
⁢
y
∈
A
Assertion
cnsubrglem
⊢
A
∈
SubRing
⁡
ℂ
fld
Proof
Step
Hyp
Ref
Expression
1
cnsubglem.1
⊢
x
∈
A
→
x
∈
ℂ
2
cnsubglem.2
⊢
x
∈
A
∧
y
∈
A
→
x
+
y
∈
A
3
cnsubglem.3
⊢
x
∈
A
→
−
x
∈
A
4
cnsubrglem.4
⊢
1
∈
A
5
cnsubrglem.5
⊢
x
∈
A
∧
y
∈
A
→
x
⁢
y
∈
A
6
1
2
3
4
cnsubglem
⊢
A
∈
SubGrp
⁡
ℂ
fld
7
5
rgen2
⊢
∀
x
∈
A
∀
y
∈
A
x
⁢
y
∈
A
8
cnring
⊢
ℂ
fld
∈
Ring
9
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
10
cnfld1
⊢
1
=
1
ℂ
fld
11
cnfldmul
⊢
×
=
⋅
ℂ
fld
12
9
10
11
issubrg2
⊢
ℂ
fld
∈
Ring
→
A
∈
SubRing
⁡
ℂ
fld
↔
A
∈
SubGrp
⁡
ℂ
fld
∧
1
∈
A
∧
∀
x
∈
A
∀
y
∈
A
x
⁢
y
∈
A
13
8
12
ax-mp
⊢
A
∈
SubRing
⁡
ℂ
fld
↔
A
∈
SubGrp
⁡
ℂ
fld
∧
1
∈
A
∧
∀
x
∈
A
∀
y
∈
A
x
⁢
y
∈
A
14
6
4
7
13
mpbir3an
⊢
A
∈
SubRing
⁡
ℂ
fld