Metamath Proof Explorer


Theorem cnsubrglem

Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)

Ref Expression
Hypotheses cnsubglem.1 x A x
cnsubglem.2 x A y A x + y A
cnsubglem.3 x A x A
cnsubrglem.4 1 A
cnsubrglem.5 x A y A x y A
Assertion cnsubrglem A SubRing fld

Proof

Step Hyp Ref Expression
1 cnsubglem.1 x A x
2 cnsubglem.2 x A y A x + y A
3 cnsubglem.3 x A x A
4 cnsubrglem.4 1 A
5 cnsubrglem.5 x A y A x y A
6 1 2 3 4 cnsubglem A SubGrp fld
7 1 adantr x A y A x
8 1 ax-gen x x A x
9 eleq1 x = y x A y A
10 eleq1 x = y x y
11 9 10 imbi12d x = y x A x y A y
12 11 spvv x x A x y A y
13 8 12 ax-mp y A y
14 13 adantl x A y A y
15 7 14 jca x A y A x y
16 ovmpot x y x u , v u v y = x y
17 15 16 syl x A y A x u , v u v y = x y
18 17 eqcomd x A y A x y = x u , v u v y
19 18 eleq1d x A y A x y A x u , v u v y A
20 5 19 mpbid x A y A x u , v u v y A
21 20 rgen2 x A y A x u , v u v y A
22 cnring fld Ring
23 cnfldbas = Base fld
24 cnfld1 1 = 1 fld
25 mpocnfldmul u , v u v = fld
26 23 24 25 issubrg2 fld Ring A SubRing fld A SubGrp fld 1 A x A y A x u , v u v y A
27 22 26 ax-mp A SubRing fld A SubGrp fld 1 A x A y A x u , v u v y A
28 6 4 21 27 mpbir3an A SubRing fld