Step |
Hyp |
Ref |
Expression |
1 |
|
cntop1 |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
simpl3 |
|
4 |
|
cnima |
|
5 |
3 4
|
sylan |
|
6 |
|
eleq2 |
|
7 |
|
eleq2 |
|
8 |
6 7
|
bibi12d |
|
9 |
8
|
rspcv |
|
10 |
5 9
|
syl |
|
11 |
|
simprl |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
cnf |
|
15 |
3 14
|
syl |
|
16 |
15
|
ffnd |
|
17 |
|
elpreima |
|
18 |
16 17
|
syl |
|
19 |
11 18
|
mpbirand |
|
20 |
|
simprr |
|
21 |
|
elpreima |
|
22 |
16 21
|
syl |
|
23 |
20 22
|
mpbirand |
|
24 |
19 23
|
bibi12d |
|
25 |
24
|
adantr |
|
26 |
10 25
|
sylibd |
|
27 |
26
|
ralrimdva |
|
28 |
|
simpl1 |
|
29 |
15 11
|
ffvelrnd |
|
30 |
15 20
|
ffvelrnd |
|
31 |
13
|
t0sep |
|
32 |
28 29 30 31
|
syl12anc |
|
33 |
27 32
|
syld |
|
34 |
|
simpl2 |
|
35 |
15
|
fdmd |
|
36 |
|
f1dm |
|
37 |
34 36
|
syl |
|
38 |
35 37
|
eqtr3d |
|
39 |
11 38
|
eleqtrd |
|
40 |
20 38
|
eleqtrd |
|
41 |
|
f1fveq |
|
42 |
34 39 40 41
|
syl12anc |
|
43 |
33 42
|
sylibd |
|
44 |
43
|
ralrimivva |
|
45 |
12
|
ist0 |
|
46 |
2 44 45
|
sylanbrc |
|