| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntop1 |  | 
						
							| 2 | 1 | 3ad2ant3 |  | 
						
							| 3 |  | simpl3 |  | 
						
							| 4 |  | cnima |  | 
						
							| 5 | 3 4 | sylan |  | 
						
							| 6 |  | eleq2 |  | 
						
							| 7 |  | eleq2 |  | 
						
							| 8 | 6 7 | bibi12d |  | 
						
							| 9 | 8 | rspcv |  | 
						
							| 10 | 5 9 | syl |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 12 13 | cnf |  | 
						
							| 15 | 3 14 | syl |  | 
						
							| 16 | 15 | ffnd |  | 
						
							| 17 |  | elpreima |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 11 18 | mpbirand |  | 
						
							| 20 |  | simprr |  | 
						
							| 21 |  | elpreima |  | 
						
							| 22 | 16 21 | syl |  | 
						
							| 23 | 20 22 | mpbirand |  | 
						
							| 24 | 19 23 | bibi12d |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 10 25 | sylibd |  | 
						
							| 27 | 26 | ralrimdva |  | 
						
							| 28 |  | simpl1 |  | 
						
							| 29 | 15 11 | ffvelcdmd |  | 
						
							| 30 | 15 20 | ffvelcdmd |  | 
						
							| 31 | 13 | t0sep |  | 
						
							| 32 | 28 29 30 31 | syl12anc |  | 
						
							| 33 | 27 32 | syld |  | 
						
							| 34 |  | simpl2 |  | 
						
							| 35 | 15 | fdmd |  | 
						
							| 36 |  | f1dm |  | 
						
							| 37 | 34 36 | syl |  | 
						
							| 38 | 35 37 | eqtr3d |  | 
						
							| 39 | 11 38 | eleqtrd |  | 
						
							| 40 | 20 38 | eleqtrd |  | 
						
							| 41 |  | f1fveq |  | 
						
							| 42 | 34 39 40 41 | syl12anc |  | 
						
							| 43 | 33 42 | sylibd |  | 
						
							| 44 | 43 | ralrimivva |  | 
						
							| 45 | 12 | ist0 |  | 
						
							| 46 | 2 44 45 | sylanbrc |  |