Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
cntrabl
Next ⟩
cntzspan
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntrabl
Description:
The center of a group is an abelian group.
(Contributed by
Thierry Arnoux
, 21-Aug-2023)
Ref
Expression
Hypothesis
cntrcmnd.z
⊢
Z
=
M
↾
𝑠
Cntr
⁡
M
Assertion
cntrabl
⊢
M
∈
Grp
→
Z
∈
Abel
Proof
Step
Hyp
Ref
Expression
1
cntrcmnd.z
⊢
Z
=
M
↾
𝑠
Cntr
⁡
M
2
eqid
⊢
Base
M
=
Base
M
3
eqid
⊢
Cntz
⁡
M
=
Cntz
⁡
M
4
2
3
cntrval
⊢
Cntz
⁡
M
⁡
Base
M
=
Cntr
⁡
M
5
ssid
⊢
Base
M
⊆
Base
M
6
2
3
cntzsubg
⊢
M
∈
Grp
∧
Base
M
⊆
Base
M
→
Cntz
⁡
M
⁡
Base
M
∈
SubGrp
⁡
M
7
5
6
mpan2
⊢
M
∈
Grp
→
Cntz
⁡
M
⁡
Base
M
∈
SubGrp
⁡
M
8
4
7
eqeltrrid
⊢
M
∈
Grp
→
Cntr
⁡
M
∈
SubGrp
⁡
M
9
1
subggrp
⊢
Cntr
⁡
M
∈
SubGrp
⁡
M
→
Z
∈
Grp
10
8
9
syl
⊢
M
∈
Grp
→
Z
∈
Grp
11
grpmnd
⊢
M
∈
Grp
→
M
∈
Mnd
12
1
cntrcmnd
⊢
M
∈
Mnd
→
Z
∈
CMnd
13
11
12
syl
⊢
M
∈
Grp
→
Z
∈
CMnd
14
isabl
⊢
Z
∈
Abel
↔
Z
∈
Grp
∧
Z
∈
CMnd
15
10
13
14
sylanbrc
⊢
M
∈
Grp
→
Z
∈
Abel