Metamath Proof Explorer


Theorem cntrabl

Description: The center of a group is an abelian group. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis cntrcmnd.z Z = M 𝑠 Cntr M
Assertion cntrabl M Grp Z Abel

Proof

Step Hyp Ref Expression
1 cntrcmnd.z Z = M 𝑠 Cntr M
2 eqid Base M = Base M
3 eqid Cntz M = Cntz M
4 2 3 cntrval Cntz M Base M = Cntr M
5 ssid Base M Base M
6 2 3 cntzsubg M Grp Base M Base M Cntz M Base M SubGrp M
7 5 6 mpan2 M Grp Cntz M Base M SubGrp M
8 4 7 eqeltrrid M Grp Cntr M SubGrp M
9 1 subggrp Cntr M SubGrp M Z Grp
10 8 9 syl M Grp Z Grp
11 grpmnd M Grp M Mnd
12 1 cntrcmnd M Mnd Z CMnd
13 11 12 syl M Grp Z CMnd
14 isabl Z Abel Z Grp Z CMnd
15 10 13 14 sylanbrc M Grp Z Abel