Metamath Proof Explorer


Theorem cntrcmnd

Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis cntrcmnd.z Z = M 𝑠 Cntr M
Assertion cntrcmnd M Mnd Z CMnd

Proof

Step Hyp Ref Expression
1 cntrcmnd.z Z = M 𝑠 Cntr M
2 eqid Base M = Base M
3 2 cntrss Cntr M Base M
4 1 2 ressbas2 Cntr M Base M Cntr M = Base Z
5 3 4 mp1i M Mnd Cntr M = Base Z
6 fvex Cntr M V
7 eqid + M = + M
8 1 7 ressplusg Cntr M V + M = + Z
9 6 8 mp1i M Mnd + M = + Z
10 eqid Cntz M = Cntz M
11 2 10 cntrval Cntz M Base M = Cntr M
12 ssid Base M Base M
13 2 10 cntzsubm M Mnd Base M Base M Cntz M Base M SubMnd M
14 12 13 mpan2 M Mnd Cntz M Base M SubMnd M
15 11 14 eqeltrrid M Mnd Cntr M SubMnd M
16 1 submmnd Cntr M SubMnd M Z Mnd
17 15 16 syl M Mnd Z Mnd
18 simp2 M Mnd x Cntr M y Cntr M x Cntr M
19 simp3 M Mnd x Cntr M y Cntr M y Cntr M
20 3 19 sselid M Mnd x Cntr M y Cntr M y Base M
21 eqid Cntr M = Cntr M
22 2 7 21 cntri x Cntr M y Base M x + M y = y + M x
23 18 20 22 syl2anc M Mnd x Cntr M y Cntr M x + M y = y + M x
24 5 9 17 23 iscmnd M Mnd Z CMnd