Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
cntrnsg
Next ⟩
The opposite group
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntrnsg
Description:
The center of a group is a normal subgroup.
(Contributed by
Stefan O'Rear
, 6-Sep-2015)
Ref
Expression
Hypothesis
cntrnsg.z
⊢
Z
=
Cntr
⁡
M
Assertion
cntrnsg
⊢
M
∈
Grp
→
Z
∈
NrmSGrp
⁡
M
Proof
Step
Hyp
Ref
Expression
1
cntrnsg.z
⊢
Z
=
Cntr
⁡
M
2
eqid
⊢
Base
M
=
Base
M
3
eqid
⊢
Cntz
⁡
M
=
Cntz
⁡
M
4
2
3
cntrval
⊢
Cntz
⁡
M
⁡
Base
M
=
Cntr
⁡
M
5
1
4
eqtr4i
⊢
Z
=
Cntz
⁡
M
⁡
Base
M
6
ssid
⊢
Base
M
⊆
Base
M
7
2
3
cntzsubg
⊢
M
∈
Grp
∧
Base
M
⊆
Base
M
→
Cntz
⁡
M
⁡
Base
M
∈
SubGrp
⁡
M
8
6
7
mpan2
⊢
M
∈
Grp
→
Cntz
⁡
M
⁡
Base
M
∈
SubGrp
⁡
M
9
5
8
eqeltrid
⊢
M
∈
Grp
→
Z
∈
SubGrp
⁡
M
10
ssid
⊢
Z
⊆
Z
11
1
cntrsubgnsg
⊢
Z
∈
SubGrp
⁡
M
∧
Z
⊆
Z
→
Z
∈
NrmSGrp
⁡
M
12
9
10
11
sylancl
⊢
M
∈
Grp
→
Z
∈
NrmSGrp
⁡
M