Metamath Proof Explorer


Theorem cntrnsg

Description: The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis cntrnsg.z Z = Cntr M
Assertion cntrnsg M Grp Z NrmSGrp M

Proof

Step Hyp Ref Expression
1 cntrnsg.z Z = Cntr M
2 eqid Base M = Base M
3 eqid Cntz M = Cntz M
4 2 3 cntrval Cntz M Base M = Cntr M
5 1 4 eqtr4i Z = Cntz M Base M
6 ssid Base M Base M
7 2 3 cntzsubg M Grp Base M Base M Cntz M Base M SubGrp M
8 6 7 mpan2 M Grp Cntz M Base M SubGrp M
9 5 8 eqeltrid M Grp Z SubGrp M
10 ssid Z Z
11 1 cntrsubgnsg Z SubGrp M Z Z Z NrmSGrp M
12 9 10 11 sylancl M Grp Z NrmSGrp M