Metamath Proof Explorer


Theorem cntrsubgnsg

Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis cntrnsg.z Z = Cntr M
Assertion cntrsubgnsg X SubGrp M X Z X NrmSGrp M

Proof

Step Hyp Ref Expression
1 cntrnsg.z Z = Cntr M
2 simpl X SubGrp M X Z X SubGrp M
3 simplr X SubGrp M X Z x Base M y X X Z
4 simprr X SubGrp M X Z x Base M y X y X
5 3 4 sseldd X SubGrp M X Z x Base M y X y Z
6 eqid Base M = Base M
7 eqid Cntz M = Cntz M
8 6 7 cntrval Cntz M Base M = Cntr M
9 8 1 eqtr4i Cntz M Base M = Z
10 5 9 eleqtrrdi X SubGrp M X Z x Base M y X y Cntz M Base M
11 simprl X SubGrp M X Z x Base M y X x Base M
12 eqid + M = + M
13 12 7 cntzi y Cntz M Base M x Base M y + M x = x + M y
14 10 11 13 syl2anc X SubGrp M X Z x Base M y X y + M x = x + M y
15 14 oveq1d X SubGrp M X Z x Base M y X y + M x - M x = x + M y - M x
16 subgrcl X SubGrp M M Grp
17 16 ad2antrr X SubGrp M X Z x Base M y X M Grp
18 6 subgss X SubGrp M X Base M
19 18 ad2antrr X SubGrp M X Z x Base M y X X Base M
20 19 4 sseldd X SubGrp M X Z x Base M y X y Base M
21 eqid - M = - M
22 6 12 21 grppncan M Grp y Base M x Base M y + M x - M x = y
23 17 20 11 22 syl3anc X SubGrp M X Z x Base M y X y + M x - M x = y
24 15 23 eqtr3d X SubGrp M X Z x Base M y X x + M y - M x = y
25 24 4 eqeltrd X SubGrp M X Z x Base M y X x + M y - M x X
26 25 ralrimivva X SubGrp M X Z x Base M y X x + M y - M x X
27 6 12 21 isnsg3 X NrmSGrp M X SubGrp M x Base M y X x + M y - M x X
28 2 26 27 sylanbrc X SubGrp M X Z X NrmSGrp M