| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrnsg.z |
|
| 2 |
|
simpl |
|
| 3 |
|
simplr |
|
| 4 |
|
simprr |
|
| 5 |
3 4
|
sseldd |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
6 7
|
cntrval |
|
| 9 |
8 1
|
eqtr4i |
|
| 10 |
5 9
|
eleqtrrdi |
|
| 11 |
|
simprl |
|
| 12 |
|
eqid |
|
| 13 |
12 7
|
cntzi |
|
| 14 |
10 11 13
|
syl2anc |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
subgrcl |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
6
|
subgss |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
19 4
|
sseldd |
|
| 21 |
|
eqid |
|
| 22 |
6 12 21
|
grppncan |
|
| 23 |
17 20 11 22
|
syl3anc |
|
| 24 |
15 23
|
eqtr3d |
|
| 25 |
24 4
|
eqeltrd |
|
| 26 |
25
|
ralrimivva |
|
| 27 |
6 12 21
|
isnsg3 |
|
| 28 |
2 26 27
|
sylanbrc |
|