Metamath Proof Explorer


Theorem cntrval

Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntrval.b B = Base M
cntrval.z Z = Cntz M
Assertion cntrval Z B = Cntr M

Proof

Step Hyp Ref Expression
1 cntrval.b B = Base M
2 cntrval.z Z = Cntz M
3 fveq2 m = M Cntz m = Cntz M
4 3 2 eqtr4di m = M Cntz m = Z
5 fveq2 m = M Base m = Base M
6 5 1 eqtr4di m = M Base m = B
7 4 6 fveq12d m = M Cntz m Base m = Z B
8 df-cntr Cntr = m V Cntz m Base m
9 fvex Z B V
10 7 8 9 fvmpt M V Cntr M = Z B
11 10 eqcomd M V Z B = Cntr M
12 0fv B =
13 fvprc ¬ M V Cntz M =
14 2 13 eqtrid ¬ M V Z =
15 14 fveq1d ¬ M V Z B = B
16 fvprc ¬ M V Cntr M =
17 12 15 16 3eqtr4a ¬ M V Z B = Cntr M
18 11 17 pm2.61i Z B = Cntr M