Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
cntrval
Next ⟩
cntzfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntrval
Description:
Substitute definition of the center.
(Contributed by
Stefan O'Rear
, 5-Sep-2015)
Ref
Expression
Hypotheses
cntrval.b
⊢
B
=
Base
M
cntrval.z
⊢
Z
=
Cntz
⁡
M
Assertion
cntrval
⊢
Z
⁡
B
=
Cntr
⁡
M
Proof
Step
Hyp
Ref
Expression
1
cntrval.b
⊢
B
=
Base
M
2
cntrval.z
⊢
Z
=
Cntz
⁡
M
3
fveq2
⊢
m
=
M
→
Cntz
⁡
m
=
Cntz
⁡
M
4
3
2
eqtr4di
⊢
m
=
M
→
Cntz
⁡
m
=
Z
5
fveq2
⊢
m
=
M
→
Base
m
=
Base
M
6
5
1
eqtr4di
⊢
m
=
M
→
Base
m
=
B
7
4
6
fveq12d
⊢
m
=
M
→
Cntz
⁡
m
⁡
Base
m
=
Z
⁡
B
8
df-cntr
⊢
Cntr
=
m
∈
V
⟼
Cntz
⁡
m
⁡
Base
m
9
fvex
⊢
Z
⁡
B
∈
V
10
7
8
9
fvmpt
⊢
M
∈
V
→
Cntr
⁡
M
=
Z
⁡
B
11
10
eqcomd
⊢
M
∈
V
→
Z
⁡
B
=
Cntr
⁡
M
12
0fv
⊢
∅
⁡
B
=
∅
13
fvprc
⊢
¬
M
∈
V
→
Cntz
⁡
M
=
∅
14
2
13
eqtrid
⊢
¬
M
∈
V
→
Z
=
∅
15
14
fveq1d
⊢
¬
M
∈
V
→
Z
⁡
B
=
∅
⁡
B
16
fvprc
⊢
¬
M
∈
V
→
Cntr
⁡
M
=
∅
17
12
15
16
3eqtr4a
⊢
¬
M
∈
V
→
Z
⁡
B
=
Cntr
⁡
M
18
11
17
pm2.61i
⊢
Z
⁡
B
=
Cntr
⁡
M