Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
cntz2ss
Next ⟩
cntzrec
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntz2ss
Description:
Centralizers reverse the subset relation.
(Contributed by
Mario Carneiro
, 3-Oct-2015)
Ref
Expression
Hypotheses
cntzrec.b
⊢
B
=
Base
M
cntzrec.z
⊢
Z
=
Cntz
⁡
M
Assertion
cntz2ss
⊢
S
⊆
B
∧
T
⊆
S
→
Z
⁡
S
⊆
Z
⁡
T
Proof
Step
Hyp
Ref
Expression
1
cntzrec.b
⊢
B
=
Base
M
2
cntzrec.z
⊢
Z
=
Cntz
⁡
M
3
eqid
⊢
+
M
=
+
M
4
3
2
cntzi
⊢
x
∈
Z
⁡
S
∧
y
∈
S
→
x
+
M
y
=
y
+
M
x
5
4
ralrimiva
⊢
x
∈
Z
⁡
S
→
∀
y
∈
S
x
+
M
y
=
y
+
M
x
6
ssralv
⊢
T
⊆
S
→
∀
y
∈
S
x
+
M
y
=
y
+
M
x
→
∀
y
∈
T
x
+
M
y
=
y
+
M
x
7
6
adantl
⊢
S
⊆
B
∧
T
⊆
S
→
∀
y
∈
S
x
+
M
y
=
y
+
M
x
→
∀
y
∈
T
x
+
M
y
=
y
+
M
x
8
5
7
syl5
⊢
S
⊆
B
∧
T
⊆
S
→
x
∈
Z
⁡
S
→
∀
y
∈
T
x
+
M
y
=
y
+
M
x
9
8
ralrimiv
⊢
S
⊆
B
∧
T
⊆
S
→
∀
x
∈
Z
⁡
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
10
1
2
cntzssv
⊢
Z
⁡
S
⊆
B
11
sstr
⊢
T
⊆
S
∧
S
⊆
B
→
T
⊆
B
12
11
ancoms
⊢
S
⊆
B
∧
T
⊆
S
→
T
⊆
B
13
1
3
2
sscntz
⊢
Z
⁡
S
⊆
B
∧
T
⊆
B
→
Z
⁡
S
⊆
Z
⁡
T
↔
∀
x
∈
Z
⁡
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
14
10
12
13
sylancr
⊢
S
⊆
B
∧
T
⊆
S
→
Z
⁡
S
⊆
Z
⁡
T
↔
∀
x
∈
Z
⁡
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
15
9
14
mpbird
⊢
S
⊆
B
∧
T
⊆
S
→
Z
⁡
S
⊆
Z
⁡
T