Metamath Proof Explorer


Theorem cntzcmn

Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses cntzcmn.b B = Base G
cntzcmn.z Z = Cntz G
Assertion cntzcmn G CMnd S B Z S = B

Proof

Step Hyp Ref Expression
1 cntzcmn.b B = Base G
2 cntzcmn.z Z = Cntz G
3 1 2 cntzssv Z S B
4 3 a1i G CMnd S B Z S B
5 simpl1 G CMnd S B x B y S G CMnd
6 simpl3 G CMnd S B x B y S x B
7 simp2 G CMnd S B x B S B
8 7 sselda G CMnd S B x B y S y B
9 eqid + G = + G
10 1 9 cmncom G CMnd x B y B x + G y = y + G x
11 5 6 8 10 syl3anc G CMnd S B x B y S x + G y = y + G x
12 11 ralrimiva G CMnd S B x B y S x + G y = y + G x
13 1 9 2 cntzel S B x B x Z S y S x + G y = y + G x
14 13 3adant1 G CMnd S B x B x Z S y S x + G y = y + G x
15 12 14 mpbird G CMnd S B x B x Z S
16 15 3expia G CMnd S B x B x Z S
17 16 ssrdv G CMnd S B B Z S
18 4 17 eqssd G CMnd S B Z S = B