Metamath Proof Explorer


Theorem cntzcmnf

Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cntzcmnf.b B = Base G
cntzcmnf.z Z = Cntz G
cntzcmnf.g φ G CMnd
cntzcmnf.f φ F : A B
Assertion cntzcmnf φ ran F Z ran F

Proof

Step Hyp Ref Expression
1 cntzcmnf.b B = Base G
2 cntzcmnf.z Z = Cntz G
3 cntzcmnf.g φ G CMnd
4 cntzcmnf.f φ F : A B
5 4 frnd φ ran F B
6 1 2 cntzcmn G CMnd ran F B Z ran F = B
7 3 5 6 syl2anc φ Z ran F = B
8 5 7 sseqtrrd φ ran F Z ran F