Metamath Proof Explorer


Theorem cntzcmnss

Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019)

Ref Expression
Hypotheses cntzcmnss.b B = Base G
cntzcmnss.z Z = Cntz G
Assertion cntzcmnss G CMnd S B S Z S

Proof

Step Hyp Ref Expression
1 cntzcmnss.b B = Base G
2 cntzcmnss.z Z = Cntz G
3 1 2 cntzcmn G CMnd S B Z S = B
4 sseq2 B = Z S S B S Z S
5 4 eqcoms Z S = B S B S Z S
6 5 biimpd Z S = B S B S Z S
7 6 adantld Z S = B G CMnd S B S Z S
8 3 7 mpcom G CMnd S B S Z S