Metamath Proof Explorer


Theorem cntzel

Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzfval.b B = Base M
cntzfval.p + ˙ = + M
cntzfval.z Z = Cntz M
Assertion cntzel S B X B X Z S y S X + ˙ y = y + ˙ X

Proof

Step Hyp Ref Expression
1 cntzfval.b B = Base M
2 cntzfval.p + ˙ = + M
3 cntzfval.z Z = Cntz M
4 1 2 3 elcntz S B X Z S X B y S X + ˙ y = y + ˙ X
5 4 baibd S B X B X Z S y S X + ˙ y = y + ˙ X