Metamath Proof Explorer


Theorem cntzidss

Description: If the elements of S commute, the elements of a subset T also commute. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis cntzmhm.z Z = Cntz G
Assertion cntzidss S Z S T S T Z T

Proof

Step Hyp Ref Expression
1 cntzmhm.z Z = Cntz G
2 simpr S Z S T S T S
3 simpl S Z S T S S Z S
4 eqid Base G = Base G
5 4 1 cntzssv Z S Base G
6 3 5 sstrdi S Z S T S S Base G
7 4 1 cntz2ss S Base G T S Z S Z T
8 6 7 sylancom S Z S T S Z S Z T
9 3 8 sstrd S Z S T S S Z T
10 2 9 sstrd S Z S T S T Z T