Metamath Proof Explorer


Theorem cntzmhm

Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cntzmhm.z Z = Cntz G
cntzmhm.y Y = Cntz H
Assertion cntzmhm F G MndHom H A Z S F A Y F S

Proof

Step Hyp Ref Expression
1 cntzmhm.z Z = Cntz G
2 cntzmhm.y Y = Cntz H
3 eqid Base G = Base G
4 eqid Base H = Base H
5 3 4 mhmf F G MndHom H F : Base G Base H
6 3 1 cntzssv Z S Base G
7 6 sseli A Z S A Base G
8 ffvelrn F : Base G Base H A Base G F A Base H
9 5 7 8 syl2an F G MndHom H A Z S F A Base H
10 eqid + G = + G
11 10 1 cntzi A Z S x S A + G x = x + G A
12 11 adantll F G MndHom H A Z S x S A + G x = x + G A
13 12 fveq2d F G MndHom H A Z S x S F A + G x = F x + G A
14 simpll F G MndHom H A Z S x S F G MndHom H
15 7 ad2antlr F G MndHom H A Z S x S A Base G
16 3 1 cntzrcl A Z S G V S Base G
17 16 adantl F G MndHom H A Z S G V S Base G
18 17 simprd F G MndHom H A Z S S Base G
19 18 sselda F G MndHom H A Z S x S x Base G
20 eqid + H = + H
21 3 10 20 mhmlin F G MndHom H A Base G x Base G F A + G x = F A + H F x
22 14 15 19 21 syl3anc F G MndHom H A Z S x S F A + G x = F A + H F x
23 3 10 20 mhmlin F G MndHom H x Base G A Base G F x + G A = F x + H F A
24 14 19 15 23 syl3anc F G MndHom H A Z S x S F x + G A = F x + H F A
25 13 22 24 3eqtr3d F G MndHom H A Z S x S F A + H F x = F x + H F A
26 25 ralrimiva F G MndHom H A Z S x S F A + H F x = F x + H F A
27 5 adantr F G MndHom H A Z S F : Base G Base H
28 27 ffnd F G MndHom H A Z S F Fn Base G
29 oveq2 y = F x F A + H y = F A + H F x
30 oveq1 y = F x y + H F A = F x + H F A
31 29 30 eqeq12d y = F x F A + H y = y + H F A F A + H F x = F x + H F A
32 31 ralima F Fn Base G S Base G y F S F A + H y = y + H F A x S F A + H F x = F x + H F A
33 28 18 32 syl2anc F G MndHom H A Z S y F S F A + H y = y + H F A x S F A + H F x = F x + H F A
34 26 33 mpbird F G MndHom H A Z S y F S F A + H y = y + H F A
35 imassrn F S ran F
36 27 frnd F G MndHom H A Z S ran F Base H
37 35 36 sstrid F G MndHom H A Z S F S Base H
38 4 20 2 elcntz F S Base H F A Y F S F A Base H y F S F A + H y = y + H F A
39 37 38 syl F G MndHom H A Z S F A Y F S F A Base H y F S F A + H y = y + H F A
40 9 34 39 mpbir2and F G MndHom H A Z S F A Y F S