Metamath Proof Explorer


Theorem cntzrcl

Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzrcl.b B = Base M
cntzrcl.z Z = Cntz M
Assertion cntzrcl X Z S M V S B

Proof

Step Hyp Ref Expression
1 cntzrcl.b B = Base M
2 cntzrcl.z Z = Cntz M
3 noel ¬ X
4 fvprc ¬ M V Cntz M =
5 2 4 eqtrid ¬ M V Z =
6 5 fveq1d ¬ M V Z S = S
7 0fv S =
8 6 7 eqtrdi ¬ M V Z S =
9 8 eleq2d ¬ M V X Z S X
10 3 9 mtbiri ¬ M V ¬ X Z S
11 10 con4i X Z S M V
12 eqid + M = + M
13 1 12 2 cntzfval M V Z = x 𝒫 B y B | z x y + M z = z + M y
14 11 13 syl X Z S Z = x 𝒫 B y B | z x y + M z = z + M y
15 14 dmeqd X Z S dom Z = dom x 𝒫 B y B | z x y + M z = z + M y
16 eqid x 𝒫 B y B | z x y + M z = z + M y = x 𝒫 B y B | z x y + M z = z + M y
17 16 dmmptss dom x 𝒫 B y B | z x y + M z = z + M y 𝒫 B
18 15 17 eqsstrdi X Z S dom Z 𝒫 B
19 elfvdm X Z S S dom Z
20 18 19 sseldd X Z S S 𝒫 B
21 20 elpwid X Z S S B
22 11 21 jca X Z S M V S B