Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
cntzrec
Next ⟩
cntziinsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntzrec
Description:
Reciprocity relationship for centralizers.
(Contributed by
Stefan O'Rear
, 5-Sep-2015)
Ref
Expression
Hypotheses
cntzrec.b
⊢
B
=
Base
M
cntzrec.z
⊢
Z
=
Cntz
⁡
M
Assertion
cntzrec
⊢
S
⊆
B
∧
T
⊆
B
→
S
⊆
Z
⁡
T
↔
T
⊆
Z
⁡
S
Proof
Step
Hyp
Ref
Expression
1
cntzrec.b
⊢
B
=
Base
M
2
cntzrec.z
⊢
Z
=
Cntz
⁡
M
3
ralcom
⊢
∀
x
∈
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
↔
∀
y
∈
T
∀
x
∈
S
x
+
M
y
=
y
+
M
x
4
eqcom
⊢
x
+
M
y
=
y
+
M
x
↔
y
+
M
x
=
x
+
M
y
5
4
2ralbii
⊢
∀
y
∈
T
∀
x
∈
S
x
+
M
y
=
y
+
M
x
↔
∀
y
∈
T
∀
x
∈
S
y
+
M
x
=
x
+
M
y
6
3
5
bitri
⊢
∀
x
∈
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
↔
∀
y
∈
T
∀
x
∈
S
y
+
M
x
=
x
+
M
y
7
6
a1i
⊢
S
⊆
B
∧
T
⊆
B
→
∀
x
∈
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
↔
∀
y
∈
T
∀
x
∈
S
y
+
M
x
=
x
+
M
y
8
eqid
⊢
+
M
=
+
M
9
1
8
2
sscntz
⊢
S
⊆
B
∧
T
⊆
B
→
S
⊆
Z
⁡
T
↔
∀
x
∈
S
∀
y
∈
T
x
+
M
y
=
y
+
M
x
10
1
8
2
sscntz
⊢
T
⊆
B
∧
S
⊆
B
→
T
⊆
Z
⁡
S
↔
∀
y
∈
T
∀
x
∈
S
y
+
M
x
=
x
+
M
y
11
10
ancoms
⊢
S
⊆
B
∧
T
⊆
B
→
T
⊆
Z
⁡
S
↔
∀
y
∈
T
∀
x
∈
S
y
+
M
x
=
x
+
M
y
12
7
9
11
3bitr4d
⊢
S
⊆
B
∧
T
⊆
B
→
S
⊆
Z
⁡
T
↔
T
⊆
Z
⁡
S