Database
BASIC ALGEBRAIC STRUCTURES
Groups
Direct products
Direct products (extension)
cntzrecd
Next ⟩
lsmcntz
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntzrecd
Description:
Commute the "subgroups commute" predicate.
(Contributed by
Mario Carneiro
, 21-Apr-2016)
Ref
Expression
Hypotheses
cntzrecd.z
⊢
Z
=
Cntz
⁡
G
cntzrecd.t
⊢
φ
→
T
∈
SubGrp
⁡
G
cntzrecd.u
⊢
φ
→
U
∈
SubGrp
⁡
G
cntzrecd.s
⊢
φ
→
T
⊆
Z
⁡
U
Assertion
cntzrecd
⊢
φ
→
U
⊆
Z
⁡
T
Proof
Step
Hyp
Ref
Expression
1
cntzrecd.z
⊢
Z
=
Cntz
⁡
G
2
cntzrecd.t
⊢
φ
→
T
∈
SubGrp
⁡
G
3
cntzrecd.u
⊢
φ
→
U
∈
SubGrp
⁡
G
4
cntzrecd.s
⊢
φ
→
T
⊆
Z
⁡
U
5
eqid
⊢
Base
G
=
Base
G
6
5
subgss
⊢
T
∈
SubGrp
⁡
G
→
T
⊆
Base
G
7
5
subgss
⊢
U
∈
SubGrp
⁡
G
→
U
⊆
Base
G
8
5
1
cntzrec
⊢
T
⊆
Base
G
∧
U
⊆
Base
G
→
T
⊆
Z
⁡
U
↔
U
⊆
Z
⁡
T
9
6
7
8
syl2an
⊢
T
∈
SubGrp
⁡
G
∧
U
∈
SubGrp
⁡
G
→
T
⊆
Z
⁡
U
↔
U
⊆
Z
⁡
T
10
2
3
9
syl2anc
⊢
φ
→
T
⊆
Z
⁡
U
↔
U
⊆
Z
⁡
T
11
4
10
mpbid
⊢
φ
→
U
⊆
Z
⁡
T