Metamath Proof Explorer


Theorem cntzrecd

Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cntzrecd.z Z = Cntz G
cntzrecd.t φ T SubGrp G
cntzrecd.u φ U SubGrp G
cntzrecd.s φ T Z U
Assertion cntzrecd φ U Z T

Proof

Step Hyp Ref Expression
1 cntzrecd.z Z = Cntz G
2 cntzrecd.t φ T SubGrp G
3 cntzrecd.u φ U SubGrp G
4 cntzrecd.s φ T Z U
5 eqid Base G = Base G
6 5 subgss T SubGrp G T Base G
7 5 subgss U SubGrp G U Base G
8 5 1 cntzrec T Base G U Base G T Z U U Z T
9 6 7 8 syl2an T SubGrp G U SubGrp G T Z U U Z T
10 2 3 9 syl2anc φ T Z U U Z T
11 4 10 mpbid φ U Z T