Metamath Proof Explorer


Theorem cntzsgrpcl

Description: Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses cntzsgrpcl.b B=BaseM
cntzsgrpcl.z Z=CntzM
cntzsgrpcl.c C=ZS
Assertion cntzsgrpcl MSmgrpSByCzCy+MzC

Proof

Step Hyp Ref Expression
1 cntzsgrpcl.b B=BaseM
2 cntzsgrpcl.z Z=CntzM
3 cntzsgrpcl.c C=ZS
4 simpll MSmgrpSByCzCMSmgrp
5 1 2 cntzssv ZSB
6 3 5 eqsstri CB
7 simprl MSmgrpSByCzCyC
8 6 7 sselid MSmgrpSByCzCyB
9 simprr MSmgrpSByCzCzC
10 6 9 sselid MSmgrpSByCzCzB
11 eqid +M=+M
12 1 11 sgrpcl MSmgrpyBzBy+MzB
13 4 8 10 12 syl3anc MSmgrpSByCzCy+MzB
14 4 adantr MSmgrpSByCzCxSMSmgrp
15 8 adantr MSmgrpSByCzCxSyB
16 10 adantr MSmgrpSByCzCxSzB
17 simpr MSmgrpSBSB
18 17 sselda MSmgrpSBxSxB
19 18 adantlr MSmgrpSByCzCxSxB
20 1 11 sgrpass MSmgrpyBzBxBy+Mz+Mx=y+Mz+Mx
21 14 15 16 19 20 syl13anc MSmgrpSByCzCxSy+Mz+Mx=y+Mz+Mx
22 3 eleq2i zCzZS
23 11 2 cntzi zZSxSz+Mx=x+Mz
24 22 23 sylanb zCxSz+Mx=x+Mz
25 9 24 sylan MSmgrpSByCzCxSz+Mx=x+Mz
26 25 oveq2d MSmgrpSByCzCxSy+Mz+Mx=y+Mx+Mz
27 1 11 sgrpass MSmgrpyBxBzBy+Mx+Mz=y+Mx+Mz
28 14 15 19 16 27 syl13anc MSmgrpSByCzCxSy+Mx+Mz=y+Mx+Mz
29 3 eleq2i yCyZS
30 11 2 cntzi yZSxSy+Mx=x+My
31 29 30 sylanb yCxSy+Mx=x+My
32 7 31 sylan MSmgrpSByCzCxSy+Mx=x+My
33 32 oveq1d MSmgrpSByCzCxSy+Mx+Mz=x+My+Mz
34 26 28 33 3eqtr2d MSmgrpSByCzCxSy+Mz+Mx=x+My+Mz
35 1 11 sgrpass MSmgrpxByBzBx+My+Mz=x+My+Mz
36 14 19 15 16 35 syl13anc MSmgrpSByCzCxSx+My+Mz=x+My+Mz
37 21 34 36 3eqtrd MSmgrpSByCzCxSy+Mz+Mx=x+My+Mz
38 37 ralrimiva MSmgrpSByCzCxSy+Mz+Mx=x+My+Mz
39 3 eleq2i y+MzCy+MzZS
40 1 11 2 elcntz SBy+MzZSy+MzBxSy+Mz+Mx=x+My+Mz
41 39 40 bitrid SBy+MzCy+MzBxSy+Mz+Mx=x+My+Mz
42 41 ad2antlr MSmgrpSByCzCy+MzCy+MzBxSy+Mz+Mx=x+My+Mz
43 13 38 42 mpbir2and MSmgrpSByCzCy+MzC
44 43 ralrimivva MSmgrpSByCzCy+MzC