Step |
Hyp |
Ref |
Expression |
1 |
|
cntzsgrpcl.b |
|
2 |
|
cntzsgrpcl.z |
|
3 |
|
cntzsgrpcl.c |
|
4 |
|
simpll |
|
5 |
1 2
|
cntzssv |
|
6 |
3 5
|
eqsstri |
|
7 |
|
simprl |
|
8 |
6 7
|
sselid |
|
9 |
|
simprr |
|
10 |
6 9
|
sselid |
|
11 |
|
eqid |
|
12 |
1 11
|
sgrpcl |
|
13 |
4 8 10 12
|
syl3anc |
|
14 |
4
|
adantr |
|
15 |
8
|
adantr |
|
16 |
10
|
adantr |
|
17 |
|
simpr |
|
18 |
17
|
sselda |
|
19 |
18
|
adantlr |
|
20 |
1 11
|
sgrpass |
|
21 |
14 15 16 19 20
|
syl13anc |
|
22 |
3
|
eleq2i |
|
23 |
11 2
|
cntzi |
|
24 |
22 23
|
sylanb |
|
25 |
9 24
|
sylan |
|
26 |
25
|
oveq2d |
|
27 |
1 11
|
sgrpass |
|
28 |
14 15 19 16 27
|
syl13anc |
|
29 |
3
|
eleq2i |
|
30 |
11 2
|
cntzi |
|
31 |
29 30
|
sylanb |
|
32 |
7 31
|
sylan |
|
33 |
32
|
oveq1d |
|
34 |
26 28 33
|
3eqtr2d |
|
35 |
1 11
|
sgrpass |
|
36 |
14 19 15 16 35
|
syl13anc |
|
37 |
21 34 36
|
3eqtrd |
|
38 |
37
|
ralrimiva |
|
39 |
3
|
eleq2i |
|
40 |
1 11 2
|
elcntz |
|
41 |
39 40
|
bitrid |
|
42 |
41
|
ad2antlr |
|
43 |
13 38 42
|
mpbir2and |
|
44 |
43
|
ralrimivva |
|