Metamath Proof Explorer


Theorem cntzspan

Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses cntzspan.z Z=CntzG
cntzspan.k K=mrClsSubMndG
cntzspan.h H=G𝑠KS
Assertion cntzspan GMndSZSHCMnd

Proof

Step Hyp Ref Expression
1 cntzspan.z Z=CntzG
2 cntzspan.k K=mrClsSubMndG
3 cntzspan.h H=G𝑠KS
4 eqid BaseG=BaseG
5 4 submacs GMndSubMndGACSBaseG
6 5 adantr GMndSZSSubMndGACSBaseG
7 6 acsmred GMndSZSSubMndGMooreBaseG
8 simpr GMndSZSSZS
9 4 1 cntzssv ZSBaseG
10 8 9 sstrdi GMndSZSSBaseG
11 4 1 cntzsubm GMndSBaseGZSSubMndG
12 10 11 syldan GMndSZSZSSubMndG
13 2 mrcsscl SubMndGMooreBaseGSZSZSSubMndGKSZS
14 7 8 12 13 syl3anc GMndSZSKSZS
15 7 2 mrcssvd GMndSZSKSBaseG
16 4 1 cntzrec KSBaseGSBaseGKSZSSZKS
17 15 10 16 syl2anc GMndSZSKSZSSZKS
18 14 17 mpbid GMndSZSSZKS
19 4 1 cntzsubm GMndKSBaseGZKSSubMndG
20 15 19 syldan GMndSZSZKSSubMndG
21 2 mrcsscl SubMndGMooreBaseGSZKSZKSSubMndGKSZKS
22 7 18 20 21 syl3anc GMndSZSKSZKS
23 2 mrccl SubMndGMooreBaseGSBaseGKSSubMndG
24 7 10 23 syl2anc GMndSZSKSSubMndG
25 3 1 submcmn2 KSSubMndGHCMndKSZKS
26 24 25 syl GMndSZSHCMndKSZKS
27 22 26 mpbird GMndSZSHCMnd