Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
cntzssv
Next ⟩
cntzi
Metamath Proof Explorer
Ascii
Unicode
Theorem
cntzssv
Description:
The centralizer is unconditionally a subset.
(Contributed by
Stefan O'Rear
, 6-Sep-2015)
Ref
Expression
Hypotheses
cntzrcl.b
⊢
B
=
Base
M
cntzrcl.z
⊢
Z
=
Cntz
⁡
M
Assertion
cntzssv
⊢
Z
⁡
S
⊆
B
Proof
Step
Hyp
Ref
Expression
1
cntzrcl.b
⊢
B
=
Base
M
2
cntzrcl.z
⊢
Z
=
Cntz
⁡
M
3
0ss
⊢
∅
⊆
B
4
sseq1
⊢
Z
⁡
S
=
∅
→
Z
⁡
S
⊆
B
↔
∅
⊆
B
5
3
4
mpbiri
⊢
Z
⁡
S
=
∅
→
Z
⁡
S
⊆
B
6
n0
⊢
Z
⁡
S
≠
∅
↔
∃
x
x
∈
Z
⁡
S
7
1
2
cntzrcl
⊢
x
∈
Z
⁡
S
→
M
∈
V
∧
S
⊆
B
8
eqid
⊢
+
M
=
+
M
9
1
8
2
cntzval
⊢
S
⊆
B
→
Z
⁡
S
=
x
∈
B
|
∀
y
∈
S
x
+
M
y
=
y
+
M
x
10
7
9
simpl2im
⊢
x
∈
Z
⁡
S
→
Z
⁡
S
=
x
∈
B
|
∀
y
∈
S
x
+
M
y
=
y
+
M
x
11
ssrab2
⊢
x
∈
B
|
∀
y
∈
S
x
+
M
y
=
y
+
M
x
⊆
B
12
10
11
eqsstrdi
⊢
x
∈
Z
⁡
S
→
Z
⁡
S
⊆
B
13
12
exlimiv
⊢
∃
x
x
∈
Z
⁡
S
→
Z
⁡
S
⊆
B
14
6
13
sylbi
⊢
Z
⁡
S
≠
∅
→
Z
⁡
S
⊆
B
15
5
14
pm2.61ine
⊢
Z
⁡
S
⊆
B