Metamath Proof Explorer


Theorem cntzssv

Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzrcl.b B = Base M
cntzrcl.z Z = Cntz M
Assertion cntzssv Z S B

Proof

Step Hyp Ref Expression
1 cntzrcl.b B = Base M
2 cntzrcl.z Z = Cntz M
3 0ss B
4 sseq1 Z S = Z S B B
5 3 4 mpbiri Z S = Z S B
6 n0 Z S x x Z S
7 1 2 cntzrcl x Z S M V S B
8 eqid + M = + M
9 1 8 2 cntzval S B Z S = x B | y S x + M y = y + M x
10 7 9 simpl2im x Z S Z S = x B | y S x + M y = y + M x
11 ssrab2 x B | y S x + M y = y + M x B
12 10 11 eqsstrdi x Z S Z S B
13 12 exlimiv x x Z S Z S B
14 6 13 sylbi Z S Z S B
15 5 14 pm2.61ine Z S B